1
|
Chen T, Li X, Wang Q, Li Y, Xu L, Yang Y, Qiao Y, Dai Y, Ke J, Wan H, Zhou S, Gao Z. A multifunctional Ag NPs/guar gum hydrogel as versatile platform for catalysts, antibacterial agents, and construction of oil-water separation interfaces. Int J Biol Macromol 2024; 270:132035. [PMID: 38705316 DOI: 10.1016/j.ijbiomac.2024.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.
Collapse
Affiliation(s)
- Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Xin Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Qiyuan Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Ye Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Le Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yihang Yang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yunfan Qiao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yuchen Dai
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Jie Ke
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hongri Wan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Shuai Zhou
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojian Gao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China.
| |
Collapse
|
2
|
Zhang W, Liu Y, Tao F, An Y, Zhong Y, Liu Z, Hu Z, Zhang X, Wang X. An overview of biomass-based Oil/Water separation materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
3
|
Guo S, Liu X, Guo C, Ning Y, Yang K, Yu C, Liu K, Jiang L. Bioinspired Underwater Superoleophilic Two-Dimensional Surface with Asymmetric Oleophobic Barriers for Unidirectional and Long-Distance Oil Transport. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22684-22691. [PMID: 37099287 DOI: 10.1021/acsami.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Unidirectional and long-distance liquid transport is critically important to a range of practical applications, e.g., water harvesting, microfluidics, and chemical reactions. Great efforts have been made on liquid manipulation; most of which, however, are limited in the air environment. It is still a great challenge to achieve unidirectional and long-distance oil transport in an aqueous environment. Herein, we have successfully fabricated an underwater superoleophilic two-dimensional surface (USTS) with asymmetric oleophobic barriers to arbitrarily manipulate oil in aqueous medium. The behavior of oil on USTS was carefully investigated, of which the unidirectional spreading capability was originated from the anisotropic spreading resistance resulted from the asymmetric oleophobic barriers. Accordingly, an underwater oil/water separation device has been developed, which can achieve continuous and efficient oil/water separation and further prevent the secondary pollution caused by oil volatilization.
Collapse
Affiliation(s)
- Shihao Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Xixi Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Changqing Guo
- China National Chemical Engineering Sixth Construction Co., Ltd, Xiang Yang 441100, P. R. China
| | - Yuzhen Ning
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Kaiyi Yang
- School of Transportation Science and Engineering, Beihang University, Beijing 102206, P. R. China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 102206, P. R. China
| |
Collapse
|
4
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
5
|
Yang J, Huang B, Lv Z, Cao Z. Preparation and self-assembly of ionic (PNIPAM- co-VIM) microgels and their adsorption property for phosphate ions. RSC Adv 2023; 13:3425-3437. [PMID: 36756607 PMCID: PMC9871875 DOI: 10.1039/d2ra06678e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Using N-isopropyl acrylamide (NIPAM) as the main monomer, 1-vinyl imidazole (VIM) containing tertiary amine groups as the functional comonomer, and 1,5-dibromo pentane as the crosslinking agent, ionic P(NIPAM-co-VIM) microgels were prepared by a two-step method. The crosslinking agent was reacted with tertiary amino groups by the quaternary amination. The results of zeta potential and particle size analysis showed that P(NIPAM-co-VIM) microgels were positively charged and had a particle size of about 400 nm, and the microgels with 11 wt% VIM still showed temperature sensitivity with a volume phase transition temperature of approximately 37.5 °C. The effects of VIM content, ambient temperature, and pH on the adsorption properties of the microgels for phosphate anions were explored. The self-assembly of the positively charged P(NIPAM-co-VIM) microgels with polyelectrolytes and the adsorption behavior of the layers for phosphate anions were studied using a quartz crystal microbalance (QCM). It was found that at a phosphate concentration of 0.3 mg mL-1, VIM mass fraction of 11%, pH of 5, and temperature of 20 °C, the largest adsorption capacity of P(NIPAM-co-VIM) microgel on phosphate ions could reach 346.3 mg g-1. The frequency responses of the microgel-modified QCM sensor could reach 3.0, 18.8, and 25.9 Hz when exposed to 10-8, 10-7, and 10-6 M phosphate solutions. Therefore, the ionic (PNIPAM-co-VIM) microgels could be promising for fabricating anion-binding materials for separation and sensing applications.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine 25 Heping North Road Changzhou 213000 Jiangsu P. R. China
| | - Bei Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University Changzhou 213164 Jiangsu P. R. China
| | - Zhengxiang Lv
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine 25 Heping North Road Changzhou 213000 Jiangsu P. R. China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University Changzhou 213164 Jiangsu P. R. China .,National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou 213164 P. R. China
| |
Collapse
|
6
|
Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Ling Wa Eric Shi
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| |
Collapse
|