1
|
Yun L, He J, Xu J, Cheng X. A novel method to prepare water-soluble cellulose-based fluorescent probes for highly sensitive and selective detection and removal of Hg 2+/Hg 22+ ions. Int J Biol Macromol 2023; 247:125764. [PMID: 37433421 DOI: 10.1016/j.ijbiomac.2023.125764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Improving the water solubility of natural product cellulose and using it to treat heavy metal ions is very important. In this work, cellulose-based fluorescent probes containing BODIPY fluorophore were synthesized by simple chemical method, which realized the selective recognition and removal of Hg2+/Hg22+ ions in an aqueous system. Firstly, fluorescent small molecule (BOK-NH2) bearing -NH2 group was synthesized through Knoevenagel condensation reaction between BO-NH2 and cinnamaldehyde. Secondly, via the etherification of -OH on the cellulose, substituents bearing -C ≡ CH groups with different lengths at the end are grafted on the cellulose. Finally, cellulose-based probes (P1, P2, and P3) were prepared by amino-yne click reaction. The solubility of cellulose is improved greatly, especially the cellulose derivative with branched long chains has excellent solubility in water (P3). Benefiting from the improved solubility, P3 could be processed into solutions, films, hydrogels, and powders. Upon the addition of Hg2+/Hg22+ ions, the fluorescence intensity enhanced, which are "turn-on" probes. At the same time, the probes could be utilized as efficient adsorbents for Hg2+/Hg22+ ions. The removal efficiency of P3 for Hg2+/Hg22+ is 79.7 %/82.1 %, and the adsorption capacity is 159.4 mg·g-1/164.2 mg·g-1. These cellulose-based probes are expected to be employed in the treatment of polluted environments.
Collapse
Affiliation(s)
- Lin Yun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jiao He
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jinlei Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
2
|
Esposito Corcione C, Ferrari F, Striani R, Visconti P, Greco A. Recycling of organic fraction of municipal solid waste as an innovative precursor for the production of bio-based epoxy monomers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:212-221. [PMID: 32413725 DOI: 10.1016/j.wasman.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This paper reports the preparation of newly synthesized bio-epoxy monomers, suitable for replacing petrochemical-derived epoxy resins. An original green method able to produce epoxy monomers starting from neat carbohydrates, waste flours, and even from the organic fraction of municipal solid waste (OFMSW), was here proposed. Hence, for the first time, the epoxidation of carbohydrates was attained only through the exposition to UV and ozone radiation, without using any organic solvent to carry out the reaction. Besides the innovation in the epoxidation method, this work explored the possibility of valorizing waste materials, by recycling carbohydrate scraps; in particular, the exposition of waste flours and municipal solid waste to UV and ozone and their consequent epoxidation allowed obtaining green precursors for the production of a bio-based epoxy resin. Applicability and suitability of the synthesized compounds for epoxy monomers were investigated by curing experiments with a selected amount of a model cycloaliphatic amine-type hardener, i.e. isophorodiamine (IPDA).
Collapse
Affiliation(s)
| | - Francesca Ferrari
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy.
| | - Raffaella Striani
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy.
| | - Paolo Visconti
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy.
| | - Antonio Greco
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy.
| |
Collapse
|
3
|
van der Zaal P, Klostermann C, Schols H, Bitter J, Buwalda P. Enzymatic fingerprinting of isomalto/malto-polysaccharides. Carbohydr Polym 2019; 205:279-286. [DOI: 10.1016/j.carbpol.2018.09.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
|
4
|
Haroon M, Wang L, Yu H, Abbasi NM, Zain-ul-Abdin ZUA, Saleem M, Khan RU, Ullah RS, Chen Q, Wu J. Chemical modification of starch and its application as an adsorbent material. RSC Adv 2016. [DOI: 10.1039/c6ra16795k] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Starch is a biopolymer of plant origin which is cheap, abundant and has many applications in food and non-food industries.
Collapse
|
5
|
Rapi Z, Szolnoki B, Bakó P, Niedermann P, Toldy A, Bodzay B, Keglevich G, Marosi G. Synthesis and characterization of biobased epoxy monomers derived from d-glucose. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Hong JS, Huber KC. Derivatization patterns among starch chain populations assessed by ion-exchange chromatography: A model system approach. Carbohydr Polym 2015; 122:446-55. [DOI: 10.1016/j.carbpol.2015.01.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
7
|
Hufendiek A, Trouillet V, Meier MAR, Barner-Kowollik C. Temperature Responsive Cellulose-graft-Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization. Biomacromolecules 2014; 15:2563-72. [DOI: 10.1021/bm500416m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Andrea Hufendiek
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Laboratory
of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | | - Michael A. R. Meier
- Laboratory
of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| |
Collapse
|
8
|
Rizzarelli P, Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta 2014; 808:18-43. [DOI: 10.1016/j.aca.2013.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/18/2013] [Accepted: 11/04/2013] [Indexed: 01/06/2023]
|
9
|
Leppänen AS, Xu C, Parikka K, Eklund P, Sjöholm R, Brumer H, Tenkanen M, Willför S. Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydr Polym 2012; 100:46-54. [PMID: 24188837 DOI: 10.1016/j.carbpol.2012.11.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/26/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
Abstract
Galactose units of spruce galactoglucomannan (GGM), guar galactomannan (GM), and tamarind (galacto)xyloglucan (XG) were selectively allylated. Firstly aldehyde functionalities were formed at the C-6 position via enzymatic oxidation by galactose oxidase. The formed aldehydes were further derivatized by an indium mediated Barbier-Grignard type reaction, resulting in the formation of homoallylic alcohols. In addition to allylic halides, the same reaction procedure was also applicable for GGM, when using propargyl bromide as halide. All reaction steps were done in water, thus the polysaccharides were modified in a one-pot reaction. The formation of the allylated, or propargylated, product was identified by MALDI-TOF-MS. All polysaccharide products were isolated and further characterized by GC-MS or NMR spectroscopy. By this chemo-enzymatic process, we have demonstrated a novel method for derivatization of GGM and other galactose-containing polysaccharides. The derivatized polysaccharides are potential platforms for further functionalizations.
Collapse
Affiliation(s)
- Ann-Sofie Leppänen
- Process Chemistry Centre, Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Kryazhev VN, Romanov VV, Shirokov VA. Recent advances in chemistry and biotechnology of starch derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1068162011070119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
|
13
|
Vieyra Ruiz H, Martínez ESM, Méndez MÁA. Biodegradability of polyethylene-starch blends prepared by extrusion and molded by injection: Evaluated by response surface methodology. STARCH-STARKE 2010. [DOI: 10.1002/star.201000075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Huijbrechts AM, Vermonden T, Bogaert P, Franssen MC, Visser GM, Boeriu CG, Sudhölter EJ. Optimization of the synthesis of 1-allyloxy-2-hydroxy-propyl-starch through statistical experimental design. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|