1
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
2
|
Drago S, Utzeri MA, Mauro N, Cavallaro G. Polyamidoamine-Carbon Nanodot Conjugates with Bioreducible Building Blocks: Smart Theranostic Platforms for Targeted siRNA Delivery. Biomacromolecules 2024; 25:1191-1204. [PMID: 38178792 PMCID: PMC10865362 DOI: 10.1021/acs.biomac.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
This study focuses on designing hybrid theranostic nanosystems, utilizing gadolinium-doped carbon nanodots decorated with bioreducible amphoteric polyamidoamines (PAAs). The objective is to synergize the exceptional theranostic properties of gadolinium-doped carbon nanodots (CDs) with the siRNA complexation capabilities of PAAs. Linear copolymeric polyamidoamines, based on N,N'-bis(acryloyl)cystamine, arginine, and agmatine, were synthesized, resulting in three distinct amphoteric copolymers. Notably, sulfur bridges within the PAA repeating units confer pronounced susceptibility to glutathione-mediated degradation─a key attribute in the tumor microenvironment. This pathway enables controlled and stimuli-responsive siRNA release, theoretically providing precise spatiotemporal control over therapeutic interventions. The selected PAA, conjugated with CDs using the redox-sensitive spacer cystamine, formed the CDs-Cys-PAA conjugate with superior siRNA complexing capacity. Stable against polyanion exchange, the CDs-Cys-PAA/siRNA complex released siRNA in the presence of GSH. In vitro studies assessed cytocompatibility, internalization, and gene silencing efficacy on HeLa, MCF-7, and 16HBE cell lines.
Collapse
Affiliation(s)
- Salvatore
Emanuele Drago
- Laboratory of Biocompatible
Polymers, Department of Biological, Chemical and Pharmaceutical Sciences
and Technologies (STEBICEF), University
of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible
Polymers, Department of Biological, Chemical and Pharmaceutical Sciences
and Technologies (STEBICEF), University
of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible
Polymers, Department of Biological, Chemical and Pharmaceutical Sciences
and Technologies (STEBICEF), University
of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible
Polymers, Department of Biological, Chemical and Pharmaceutical Sciences
and Technologies (STEBICEF), University
of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
3
|
Nanosized T1 MRI Contrast Agent Based on a Polyamidoamine as Multidentate Gd Ligand. Molecules 2021; 27:molecules27010174. [PMID: 35011405 PMCID: PMC8746954 DOI: 10.3390/molecules27010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
A linear polyamidoamine (PAA) named BAC-EDDS, containing metal chelating repeat units composed of two tert-amines and four carboxylic groups, has been prepared by the aza-Michael polyaddition of ethylendiaminodisuccinic (EDDS) with 2,2-bis(acrylamido)acetic acid (BAC). It was characterized by size exclusion chromatography (SEC), FTIR, UV–Vis and NMR spectroscopies. The pKa values of the ionizable groups of the repeat unit were estimated by potentiometric titration, using a purposely synthesized molecular ligand (Agly-EDDS) mimicking the structure of the BAC-EDDS repeat unit. Dynamic light scattering (DLS) and ζ-potential analyses revealed the propensity of BAC-EDDS to form stable nanoaggregates with a diameter of approximately 150 nm at pH 5 and a net negative charge at physiological pH, in line with an isoelectric point <2. BAC-EDDS stably chelated Gd (III) ions with a molar ratio of 0.5:1 Gd (III)/repeat unit. The stability constant of the molecular model Gd-Agly-EDDS (log K = 17.43) was determined as well, by simulating the potentiometric titration through the use of Hyperquad software. In order to comprehend the efficiency of Gd-BAC-EDDS in contrasting magnetic resonance images, the nuclear longitudinal (r1) and transverse (r2) relaxivities as a function of the externally applied static magnetic field were investigated and compared to the ones of commercial contrast agents. Furthermore, a model derived from the Solomon–Bloembergen–Morgan theory for the field dependence of the NMR relaxivity curves was applied and allowed us to evaluate the rotational correlation time of the complex (τ = 0.66 ns). This relatively high value is due to the dimensions of Gd-BAC-EDDS, and the associated rotational motion causes a peak in the longitudinal relaxivity at ca. 75 MHz, which is close to the frequencies used in clinics. The good performances of Gd-BAC-EDDS as a contrast agent were also confirmed through in vitro magnetic resonance imaging experiments with a 0.2 T magnetic field.
Collapse
|
4
|
Mascheroni L, Francia V, Rossotti B, Ranucci E, Ferruti P, Maggioni D, Salvati A. Light-Triggered Trafficking to the Cell Nucleus of a Cationic Polyamidoamine Functionalized with Ruthenium Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34576-34587. [PMID: 32643926 PMCID: PMC7404250 DOI: 10.1021/acsami.0c08033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strategies for endosomal escape and access to the cell nucleus are highly sought for nanocarriers to deliver their load efficiently following endocytosis. In this work, we have studied the uptake and intracellular trafficking of a polycationic polyamidoamine (PAA) endowed with a luminescent Ru complex, Ru-PhenAN, that shows unique trafficking to the cell nucleus. Live cell imaging confirmed the capacity of this polymer to access the nucleus, excluding artifacts due to cell fixation, and clarified that the mechanism of escape is light-triggered and relies on the presence of the Ru complexes and their capacity to absorb light and act as photosensitizers for singlet oxygen production. These results open up the possibility to use PAA-ruthenium complexes for targeted light-triggered delivery of genetic material or drugs to the cytosol and nucleus.
Collapse
Affiliation(s)
- Luca Mascheroni
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Valentina Francia
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Beatrice Rossotti
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Elisabetta Ranucci
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Daniela Maggioni
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Anna Salvati
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- a.salvati.@rug.nl
| |
Collapse
|
5
|
Arioli M, Manfredi A, Alongi J, Ferruti P, Ranucci E. Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers (Basel) 2020; 12:E1376. [PMID: 32575401 PMCID: PMC7361999 DOI: 10.3390/polym12061376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
This paper aims at elucidating the degradation mechanism of linear polyamidoamines (PAAs) in water. PAAs are synthesized by the aza-Michael polyaddition of prim-monoamines or bis-sec-amines with bisacrylamides. Many PAAs are water-soluble and have potential for biotechnological applications and as flame-retardants. PAAs have long been known to degrade in water at pH ≥ 7, but their degradation mechanism has never been explored in detail. Filling this gap was necessary to assess the suitability of PAAs for the above applications. To this aim, a small library of nine PAAs was expressly synthesized and their degradation mechanism in aqueous solution studied by 1H-NMR in different conditions of pH and temperature. The main degradation mechanism was in all cases the retro-aza-Michael reaction triggered by dilution but, in some cases, hints were detected of concurrent hydrolytic degradation. Most PAAs were stable at pH 4.0; all degraded at pH 7.0 and 9.0. Initially, the degradation rate was faster at pH 9.0 than at pH 7.0, but the percent degradation after 97 days was mostly lower. In most cases, at pH 7.0 the degradation followed first order kinetics. The degradation rates mainly depended on the basicity of the amine monomers. More basic amines acted as better leaving groups.
Collapse
Affiliation(s)
| | | | | | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.A.); (A.M.); (J.A.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.A.); (A.M.); (J.A.)
| |
Collapse
|
6
|
Beduini A, Carosio F, Ferruti P, Ranucci E, Alongi J. Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polymers (Basel) 2019; 11:E1904. [PMID: 31752336 PMCID: PMC6918177 DOI: 10.3390/polym11111904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 11/16/2022] Open
Abstract
The polyamidoamine derived from N,N'-methylenebisacrylamide (M) and glycine (G), M-G, has been shown to be an effective flame-retardant (FR) for cotton in horizontal flame spread tests (HFST), extinguishing the flame at 5% add-on. Its activity was attributed to its intrinsic intumescence. In vertical flame spread tests (VFST), M-G failed to extinguish the flame even at 30% add-on. Conversely, in VFST, the polyamidoamine derived from M and cystine (C), M-C, inhibited cotton combustion at 16% add-on, but in HFST failed to extinguish the flame below 12% add-on. Its activity was ascribed to the release of sulfur-containing volatiles acting as radical scavengers. In this work, the FR effectiveness of M-Gm-Cn copolymers with different G/C ratio was compared with that of the M-G and M-C homopolymers and of M-G/M-C blends of the same compositions. In HFST, both copolymers and blends extinguished the flame. In particular, M-G50-C50 and (M-G/M-C)50/50 extinguished the flame, even at 7% add-on. In VFST, the copolymers with ≥50% M-C units, similar to M-C, inhibited cotton combustion at 16% add-on. At the same add-on, the M-G/M-C blends failed to extinguish the flame. It may be concluded that, in contrast to blends, copolymers combined the merits of both homopolymers in all tests.
Collapse
Affiliation(s)
- Alessandro Beduini
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria campus, viale T. Michel, 15121 Alessandria, Italy;
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| |
Collapse
|
7
|
Alongi J, Ferruti P, Manfredi A, Carosio F, Feng Z, Hakkarainen M, Ranucci E. Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Mascheroni L, Dozzi MV, Ranucci E, Ferruti P, Francia V, Salvati A, Maggioni D. Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorg Chem 2019; 58:14586-14599. [DOI: 10.1021/acs.inorgchem.9b02245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luca Mascheroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
9
|
Rondelli V, Cola ED, Koutsioubas A, Alongi J, Ferruti P, Ranucci E, Brocca P. Mucin Thin Layers: A Model for Mucus-Covered Tissues. Int J Mol Sci 2019; 20:E3712. [PMID: 31362433 PMCID: PMC6695901 DOI: 10.3390/ijms20153712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The fate of macromolecules of biological or pharmacological interest that enter the mucus barrier is a current field of investigation. Studies of the interaction between the main constituent of mucus, mucins, and molecules involved in topical transmucoidal drug or gene delivery is a prerequisite for nanomedicine design. We studied the interaction of mucin with the bio-inspired arginine-derived amphoteric polymer d,l-ARGO7 by applying complementary techniques. Small angle X-ray scattering in bulk unveiled the formation of hundreds of nanometer-sized clusters, phase separated from the mucin mesh. Quartz microbalance with dissipation and neutron reflectometry measurements on thin mucin layers deposited on silica supports highlighted the occurrence of polymer interaction with mucin on the molecular scale. Rinsing procedures on both experimental set ups showed that interaction induces alteration of the deposited hydrogel. We succeeded in building up a new significant model for epithelial tissues covered by mucus, obtaining the deposition of a mucin layer 20 Å thick on the top of a glycolipid enriched phospholipid single membrane, suitable to be investigated by neutron reflectometry. The model is applicable to unveil the cross structural details of mucus-covered epithelia in interaction with macromolecules within the Å discreteness.
Collapse
Affiliation(s)
- Valeria Rondelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy.
| | - Emanuela Di Cola
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Jenny Alongi
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paola Brocca
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| |
Collapse
|
10
|
Lazzari F, Manfredi A, Alongi J, Marinotto D, Ferruti P, Ranucci E. d-, l- and d,l-Tryptophan-Based Polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers (Basel) 2019; 11:E543. [PMID: 30960527 PMCID: PMC6473350 DOI: 10.3390/polym11030543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022] Open
Abstract
Chiral polyamidoamino acids were obtained by polyaddition of N,N'-methylenebisacrylamide with d-, d,l- and l-tryptophan (M-d-Trp, M-d,l-Trp and M-l-Trp). l-tryptophan/glycine copolymers, M-G-l-Trp₅, M-G-l-Trp10, M-G-l-Trp20 and M-G-l-Trp40, were prepared from l-tryptophan/glycine mixtures. These polymers were amphoteric, with acid-base properties similar to those of the parent amino acids. The l-tryptophan/glycine copolymers with high glycine content were water soluble in the pH range 2-12. M-G-l-Trp40 showed a solubility gap centred at pH 4.5 and all tryptophan homopolymers were soluble only at pH > 7. Dynamic light scattering measurements performed in their solubility ranges, namely 2-11 M-G-l-Trp₅, M-G-l-Trp10 and M-G-l-Trp20 and 7-11 for M-G-l-Trp40, M-d-Trp, M-l-Trp and M-d,l-Trp, showed that the size of all samples did not significantly vary with pH. Both M-l-Trp and M-G-l-Trp copolymers showed pH-dependent circular dichroism spectra in the wavelength interval 200⁻280 nm, revealing structuring. All samples were fluorescent. Their emission spectra were unstructured and, if normalized for their tryptophan content, almost superimposable at the same pH, providing evidence that only tryptophan governed the photoluminescence properties. Changing pH induced in all cases a slight shift of the emission wavelength maximum ascribed to the modification of the microenvironment surrounding the indole ring induced by different protonation degrees.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Daniele Marinotto
- Istituto di Scienze e Tecnologie Molecolari (ISTM-CNR), via C. Golgi 19, 20133 Milano, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
11
|
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids Surf B Biointerfaces 2019; 175:10-17. [DOI: 10.1016/j.colsurfb.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
|
12
|
Ranucci E, Manfredi A. Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Galli M, Rossotti B, Arosio P, Ferretti AM, Panigati M, Ranucci E, Ferruti P, Salvati A, Maggioni D. A new catechol-functionalized polyamidoamine as an effective SPION stabilizer. Colloids Surf B Biointerfaces 2019; 174:260-269. [DOI: 10.1016/j.colsurfb.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 11/03/2018] [Indexed: 11/25/2022]
|
14
|
Polyamidoamine Nanoparticles for the Oral Administration of Antimalarial Drugs. Pharmaceutics 2018; 10:pharmaceutics10040225. [PMID: 30423797 PMCID: PMC6321545 DOI: 10.3390/pharmaceutics10040225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022] Open
Abstract
Current strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual Plasmodium stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured Plasmodium yoelii-infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to Plasmodium falciparum proteins, which might be the mechanism responsible for the preferential binding of PAAs to Plasmodium-infected erythrocytes vs. non-infected red blood cells. The weak antimalarial activity of some PAAs was found to operate through inhibition of parasite invasion, whereas the observed polymer intake by macrophages indicated a potential of PAAs for the treatment of certain coinfections such as Plasmodium and Leishmania. When fluorescein-labeled PAAs were fed to females of the malaria mosquito vectors Anopheles atroparvus and Anopheles gambiae, persistent fluorescence was observed in the midgut and in other insect's tissues. These results present PAAs as a versatile platform for the encapsulation of orally administered antimalarial drugs and for direct administration of antimalarials to mosquitoes, targeting mosquito stages of Plasmodium.
Collapse
|
15
|
Manfredi A, Carosio F, Ferruti P, Ranucci E, Alongi J. Linear polyamidoamines as novel biocompatible phosphorus-free surface-confined intumescent flame retardants for cotton fabrics. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Almulathanon AAY, Ranucci E, Ferruti P, Garnett MC, Bosquillon C. Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharm Res 2018. [PMID: 29516282 DOI: 10.1007/s11095-017-2328-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE This study aimed to further explore the mechanisms behind the ability of certain linear polyamidoamines (PAAs) to transfect cells with minimal cytotoxicity. METHODS The transfection efficiency of DNA complexed with a PAA of a molecular weight over 10 kDa or 25 kDa branched polyethyleneimine (BPEI) was compared in A549 cells using a luciferase reporter gene assay. The impact of endo/lysosomal escape on transgene expression was investigated by transfecting cells in presence of bafilomycin A1 or chloroquine. Cytotoxicity caused by the vectors was evaluated by measuring cell metabolic activity, lactate dehydrogenase release, formation of reactive oxygen species and changes in mitochondrial membrane potential. RESULTS The luciferase activity was ~3-fold lower after transfection with PAA polyplexes than with BPEI complexes at the optimal polymer to nucleotide ratio (RU:Nt). However, in contrast to BPEI vectors, PAA polyplexes caused negligible cytotoxic effects. The transfection efficiency of PAA polyplexes was significantly reduced in presence of bafilomycin A1 while chloroquine enhanced or decreased transgene expression depending on the RU:Nt. CONCLUSIONS PAA polyplexes displayed a pH-dependent endo/lysosomal escape which was not associated with cytotoxic events, unlike observed with BPEI polyplexes. This is likely due to their greater interactions with biological membranes at acidic than neutral pH.
Collapse
Affiliation(s)
- Ammar A Y Almulathanon
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,Pharmacy College,, University of Mosul,, Mosul, Iraq
| | - Elisabetta Ranucci
- Dipartimento di Chimica,, Università degli Studi di Milano, via C. Golgi 19, 20133, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica,, Università degli Studi di Milano, via C. Golgi 19, 20133, Milan, Italy
| | - Martin C Garnett
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cynthia Bosquillon
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
17
|
Caruso E, Ferrara S, Ferruti P, Manfredi A, Ranucci E, Orlandi VT. Enhanced photoinduced antibacterial activity of a BODIPY photosensitizer in the presence of polyamidoamines. Lasers Med Sci 2017; 33:1401-1407. [PMID: 29038970 DOI: 10.1007/s10103-017-2345-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023]
Abstract
Photosensitizers belonging to the boron-dipyrromethenes (BODIPYs) class were recently found endowed with good efficacy in the antibacterial photodynamic therapy (aPDT) against both Gram-positive and Gram-negative bacteria. In this paper, we report on the remarkable adjuvant effect exerted in this respect by linear polyamidoamines (PAAs), a family of moderately basic polymers obtained by Michael-type polyaddition of amines to bisacrylamides. Three different PAAs (AGMA1, BP-AGMA, and BP-DMEDA) were studied, testing for each two different molecular weight samples (8000 and 24000 Da). At nontoxic concentrations (1 or 10 µg mL-1) all PAAs remarkably improved the killing efficacy of BODIPY upon irradiation with a green LED device (range: from 480 to 580 nm with λmax = 525 nm) up to an energy rate of 16.6 J cm-2. A 6-7 log unit decrease in bacteria survival was observed with concentrations of BODIPY of 1.0 and 0.1 µM in the case of Escherichia coli and Staphylococcus aureus, respectively. The one-way analysis of variance (ANOVA) was used to evaluate the statistical significance of different treatments (n ≥ 3). Thus, the PAA-photosensitizer combination warrants potentially as a new, effective, and mild method of killing bacteria. Moreover, the antibacterial treatment here reported might be successfully applied to defeat the bacterial resistance often encountered with many antibacterial drugs owing to the double action of this two-component treatment.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), Università degli Studi dell'Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| | | | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences (DBSV), Università degli Studi dell'Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| |
Collapse
|
18
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sun Y, Xian L, Yu J, Yang T, Zhang J, Yang Z, Jiang J, Cai C, Zhao X, Yang L, Ding P. Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Lei Xian
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jiankun Yu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; Husson University; Bangor ME 04401-2929 USA
| | - Jinmin Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Zhen Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingzheng Jiang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology; School of life Science and Biopharmaceutics; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
20
|
Mauro N, Chiellini F, Bartoli C, Gazzarri M, Laus M, Antonioli D, Griffiths P, Manfredi A, Ranucci E, Ferruti P. RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. J Tissue Eng Regen Med 2016; 11:2164-2175. [DOI: 10.1002/term.2115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolò Mauro
- Dipartimento di Chimica; Università degli Studi di Milano; Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Laboratory of Biocompatible Polymers; Università Degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | | | | | | | - Michele Laus
- Dipartimento di Scienze ed Innovazione Tecnologica; Università del Piemonte Orientale 'A. Avogadro'; Alessandria Italy
| | - Diego Antonioli
- Dipartimento di Scienze ed Innovazione Tecnologica; Università del Piemonte Orientale 'A. Avogadro'; Alessandria Italy
| | - Peter Griffiths
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science; University of Greenwich, Medway Campus; Kent UK
| | - Amedea Manfredi
- Dipartimento di Chimica; Università degli Studi di Milano; Italy
| | | | - Paolo Ferruti
- Dipartimento di Chimica; Università degli Studi di Milano; Italy
| |
Collapse
|
21
|
Ekkelenkamp AE, Jansman MM, Roelofs K, Engbersen JF, Paulusse JM. Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 2016; 30:126-134. [PMID: 26518103 DOI: 10.1016/j.actbio.2015.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/14/2023]
Abstract
Narrowly dispersed zwitterionic poly(amido amine) (PAA) nanogels with a diameter of approximately 100nm were prepared by a high-yielding and surfactant-free, inverse nanoprecipitation of PAA polymers. The resulting, negatively charged, nanogels (PAA-NG1) were functionalized with N,N-dimethylethylenediamine via EDC/NHS coupling chemistry. This resulted in nanogels with a positive surface charge (PAA-NG2). Both types of nanogels were fluorescently labelled via isothiocyanate coupling. PAA-NG1 displays high colloidal stability both in PBS and Fetal Bovine Serum solution. Moreover, both nanogels exhibit a distinct zwitterionic swelling profile in response to pH changes. Cellular uptake of FITC-labelled nanogels with RAW 264.7, PC-3 and COS-7 cells was evaluated by fluorescence microscopy. These studies showed that nanogel surface charge greatly influences nanogel-cell interactions. The PAA polymer and PAA-NG1 showed minimal cell toxicity as was evaluated by MTT assays. The findings reported here demonstrate that PAA nanogels possess interesting properties for future studies in both drug delivery and imaging. STATEMENT OF SIGNIFICANCE The use of polymeric nanoparticles in biomedical applications such as drug delivery and imaging, shows great potential for medical applications. However, these nanoparticles are often not stable in biological environments. Zwitterionic polymers have shown excellent biocompatibility, but these materials are not easily degradable in biological environments. With the aim of developing a nanoparticle for drug delivery and imaging we synthesized a biomimetic and readily biodegradable zwitterionic polymer, which was incorporated into nanogels. These nanogels showed excellent stability in the presence of serum and minimal cytotoxicity, which was tested in three cell lines. Because of their negative surface charge and excellent serum stability, these nanogels are therefore promising carriers for drug delivery and molecular imaging.
Collapse
|
22
|
Maggioni D, Galli M, D'Alfonso L, Inverso D, Dozzi MV, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D'Alfonso G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg Chem 2015; 54:544-53. [PMID: 25554822 DOI: 10.1021/ic502378z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polymer complex (1P) was synthesized by binding bis(cyclometalated) Ir(ppy)2(+) fragments (ppy = 2-phenylpyridyl) to phenanthroline (phen) pendants of a poly(amidoamine) copolymer (PhenISA, in which the phen pendants involved ∼6% of the repeating units). The corresponding molecular complex [Ir(ppy)2(bap)](+) (1M, bap = 4-(butyl-4-amino)-1,10-phenanthroline) was also prepared for comparison. In water solution 1P gives nanoaggregates with a hydrodynamic diameter of 30 nm in which the lipophilic metal centers are presumed to be segregated within polymer tasks to reduce their interaction with water. Such confinement, combined with the dilution of triplet emitters along the polymer chains, led to 1P having a photoluminescence quantum yield greater than that of 1M (0.061 vs 0.034, respectively, in an aerated water solution) with a longer lifetime of the (3)MLCT excited states and a blue-shifted emission (595 nm vs 604 nm, respectively). NMR data supported segregation of the metal centers. Photoreaction of O2 with 1,5-dihydroxynaphthalene showed that 1P is able to sensitize (1)O2 generation but with half the quantum yield of 1M. Cellular uptake experiments showed that both 1M and 1P are efficient cell staining agents endowed with two-photon excitation (TPE) imaging capability. TPE microscopy at 840 nm indicated that both complexes penetrate the cellular membrane of HeLa cells, localizing in the perinuclear region. Cellular photodynamic therapy tests showed that both 1M and 1P are able to induce cell apoptosis upon exposure to Xe lamp irradiation. The fraction of apoptotic cells for 1M was higher than that for 1P (74 and 38%, respectively) 6 h after being irradiated for 5 min, but cells incubated with 1P showed much lower levels of necrosis as well as lower toxicity in the absence of irradiation. More generally, the results indicate that cell damage induced by 1M was avoided by binding the iridium sensitizers to the poly(amidoamine).
Collapse
Affiliation(s)
- Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano , Via Golgi 19, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohammadifar E, Nemati Kharat A, Adeli M. Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems. J Mater Chem B 2015; 3:3896-3921. [DOI: 10.1039/c4tb02133a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the latest advances in the conjugation of chemotherapeutics such as doxorubicin, paclitaxel, methotrexate, fluorouracil and cisplatin to dendritic polymers, including polyamidoamine dendrimers, hyperbranched polyglycerols and their linear analogues, with a focus on their cytotoxicity, biodistribution and biodegradability.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Ali Nemati Kharat
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khoramabad
- Iran
| |
Collapse
|
24
|
Oupický D, Li J. Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol Biosci 2014; 14:908-22. [PMID: 24678057 PMCID: PMC4410047 DOI: 10.1002/mabi.201400061] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Polycations that are degradable by reduction of disulfide bonds are developed for applications in delivery of nucleic acids. This Feature Article surveys methods of synthesis of bioreducible polycations and discusses current understanding of the mechanism of action of bioreducible polyplexes. Emphasis is placed on the relationship between the biological redox environment and toxicity, trafficking, transfection activity, and in vivo behavior of bioreducible polycations and polyplexes.
Collapse
Affiliation(s)
- David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Durham Research Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | |
Collapse
|
25
|
Dubois JLN, Lavignac N. Poly(amidoamine)s synthesis, characterisation and interaction with BSA. Polym Chem 2014. [DOI: 10.1039/c3py01121f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Ferruti P, Mauro N, Falciola L, Pifferi V, Bartoli C, Gazzarri M, Chiellini F, Ranucci E. Amphoteric, prevailingly cationic L-arginine polymers of poly(amidoamino acid) structure: synthesis, acid/base properties and preliminary cytocompatibility and cell-permeating characterizations. Macromol Biosci 2013; 14:390-400. [PMID: 24821667 DOI: 10.1002/mabi.201300387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/13/2013] [Indexed: 01/10/2023]
Abstract
A linear amphoteric poly(amidoamino acid), L-ARGO7, is prepared by Michael-type polyaddition of L-arginine with N,N'-methylenebisacrylamide. Chain-extension of acrylamide end-capped L-ARGO7 oligomers with piperazine leads to high-molecular-weight copolymers in which L-arginine maintains its absolute configuration. Acid/base properties of L-ARGO7 polymers show isolectric points of ≈ 10 and positive net average charges per repeating unit at pH = 7.4 from 0.25 to 0.40. These arginine-rich synthetic polymers possibly share some of the unique biological properties of polyarginine cell-permeating peptides. In vitro tests with mouse embryo fibroblasts balb/3T3 clone A31 show that L-ARGO7 polymers are endowed with effective cell internalization ability combined with minimal cytotoxicity.
Collapse
Affiliation(s)
- Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy; Consorzio Interuniversitario di Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maggioni D, Arosio P, Orsini F, Ferretti AM, Orlando T, Manfredi A, Ranucci E, Ferruti P, D'Alfonso G, Lascialfari A. Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Trans 2013; 43:1172-83. [PMID: 24169854 DOI: 10.1039/c3dt52377b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-component nanocomposites, constituted by a superparamagnetic iron oxide core coated with a polymeric surfactant bearing tightly bound Re(CO)3 moieties, were prepared and fully characterized. The water soluble and biocompatible surfactant was a linear poly(amidoamine) copolymer (PAA), containing cysteamine pendants in the minority part (ISA23SH), able to coordinate Re(CO)3 fragments. For the synthesis of the nanocomposites two methods were compared, involving either (i) peptization of bare magnetite nanoparticles by interaction with the preformed ISA23SH-Re(CO)3 complex, or (ii) "one-pot" synthesis of iron oxide nanoparticles in the presence of the ISA23SH copolymer, followed by complexation of Re to the SPIO@ISA23SH nanocomposite. Full characterization by TEM, DLS, TGA, SQUID, and relaxometry showed that the second method gave better results. The magnetic cores had a roundish shape, with low dispersion (mean diameter ca. 6 nm) and a tendency to form larger aggregates (detected both by TEM and DLS), arising from multiple interactions of the polymeric coils. Aggregation did not affect the stability of the nano-suspension, found to be stable for many months without precipitate formation. The SPIO@PAA-Re nanoparticles (NPs) showed superparamagnetic behaviour and nuclear relaxivities similar or superior to commercial MRI contrast agents (CAs), which make them promising as MRI "negative" CAs. The possibility to encapsulate (186/188)Re isotopes (γ and β emitters) gives these novel NPs the potential to behave as bimodal nanostructures devoted to theranostic applications.
Collapse
Affiliation(s)
- Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Griffiths PC, Mauro N, Murphy DM, Carter E, Richardson SCW, Dyer P, Ferruti P. Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems. Macromol Biosci 2013; 13:641-9. [DOI: 10.1002/mabi.201200462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/04/2013] [Indexed: 12/18/2022]
|
29
|
Affiliation(s)
- Paolo Ferruti
- Dipartimento di Chimicavia C. Golgi 1920133Milano Italy
- Consorzio Nazionale Interuniversitario di Scienza e Tecnologia dei Materiali (INSTM)via G. Giusti 950121Firenze Italy
| |
Collapse
|
30
|
Mauro N, Manfredi A, Ranucci E, Procacci P, Laus M, Antonioli D, Mantovani C, Magnaghi V, Ferruti P. Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. Macromol Biosci 2012; 13:332-47. [DOI: 10.1002/mabi.201200354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/08/2012] [Indexed: 02/02/2023]
|
31
|
Manfredi A, Ranucci E, Morandi S, Mussini PR, Ferruti P. Fast and quantitative manganese sorption by polyamidoamine resins. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Sara Morandi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Patrizia Romana Mussini
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
32
|
Maggioni D, Fenili F, D’Alfonso L, Donghi D, Panigati M, Zanoni I, Marzi R, Manfredi A, Ferruti P, D’Alfonso G, Ranucci E. Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorg Chem 2012; 51:12776-88. [DOI: 10.1021/ic301616b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniela Maggioni
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Fabio Fenili
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Laura D’Alfonso
- Dipartimento di
Fisica, Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Daniela Donghi
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Monica Panigati
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Ivan Zanoni
- Dipartimento di Biotecnologie
e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Marzi
- Dipartimento di Biotecnologie
e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Amedea Manfredi
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Giuseppe D’Alfonso
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Elisabetta Ranucci
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
33
|
Ferruti P, Ranucci E, Manfredi A, Mauro N, Ferrari E, Bruni R, Colombo F, Mussini P, Rossi M. L
-lysine and EDTA polymer mimics as resins for the quantitative and reversible removal of heavy metal ion water pollutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Ferruti P, Mauro N, Manfredi A, Ranucci E. Hetero-difunctional dimers as building blocks for the synthesis of poly(amidoamine)s with hetero-difunctional chain terminals and their derivatives. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Basile MA, Carfagna C, Cerruti P, Gomez d'Ayala G, Fontana A, Gambacorta A, Malinconico M, Dipasquale L. Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv 2012. [DOI: 10.1039/c2ra01025a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Magnaghi V, Conte V, Procacci P, Pivato G, Cortese P, Cavalli E, Pajardi G, Ranucci E, Fenili F, Manfredi A, Ferruti P. Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. J Biomed Mater Res A 2011; 98:19-30. [DOI: 10.1002/jbm.a.33091] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/13/2011] [Accepted: 02/22/2011] [Indexed: 12/28/2022]
|
37
|
Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration. INT J POLYM SCI 2011. [DOI: 10.1155/2011/161749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biodegradable and biocompatible poly(amidoamine)-(PAA-) based hydrogels have been considered for different tissue engineering applications. First-generation AGMA1 hydrogels, amphoteric but prevailing cationic hydrogels containing carboxylic and guanidine groups as side substituents, show satisfactory results in terms of adhesion and proliferation properties towards different cell lines. Unfortunately, these hydrogels are very swellable materials, breakable on handling, and have been found inadequate for other applications. To overcome this problem, second-generation AGMA1 hydrogels have been prepared adopting a new synthetic method. These new hydrogels exhibit good biological propertiesin vitrowith satisfactory mechanical characteristics. They are obtained in different forms and shapes and successfully testedin vivofor the regeneration of peripheral nerves. This paper reports on our recent efforts in the use of first-and second-generation PAA hydrogels as substrates for cell culturing and tubular scaffold for peripheral nerve regeneration.
Collapse
|
38
|
Piest M, Engbersen JF. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery. J Control Release 2010; 148:83-90. [DOI: 10.1016/j.jconrel.2010.07.109] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/11/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
|