1
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Daubian D, Fillion A, Gaitzsch J, Meier W. One-Pot Synthesis of an Amphiphilic ABC Triblock Copolymer PEO- b-PEHOx- b-PEtOz and Its Self-Assembly into Nanoscopic Asymmetric Polymersomes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Davy Daubian
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Alexandra Fillion
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Wolfgang Meier
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
5
|
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Evgeniia Konishcheva
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Davy Daubian
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
6
|
Suo A, Qian J, Xu M, Xu W, Zhang Y, Yao Y. Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:659-672. [PMID: 28482576 DOI: 10.1016/j.msec.2017.03.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Co-delivery of chemotherapeutic drug and small interfering RNA (siRNA) within a single nanovehicle has emerged as a promising combination therapy approach to treating cancers because of their synergistic effect. Nanocarrier delivery systems with low cytotoxicity and high efficiency are needed for such a purpose. In this study, a novel folate-conjugated PEGylated cationic triblock copolymer, poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine) (PAH-b-PDMAPMA-b-PAH), was synthesized and evaluated as a stimuli-sensitive vehicle for the targeted co-delivery of doxorubicin (DOX) and Bcl-2 siRNA into breast cancer MCF-7 cells. The synthetic process of the PEGylated triblock copolymer involved sequential reversible addition-fragmentation chain transfer polymerization, PEGylation and removal of tert-butoxy carbamate protecting groups. Folate-conjugated and/or -unconjugated poly(ethylene glycol) segments were grafted onto PAH-b-PDMAPMA-b-PAH via a reduction-sensitive disulfide linkage. The synthetic polymers were characterized by 1H NMR and gel permeation chromatography. The PEGylated triblock copolymer could chemically conjugate DOX onto PAH blocks via pH-responsive hydrazone bonds and simultaneously complex negatively charged Bcl-2 siRNA with cationic PDMAPMA blocks through electrostatic interactions at N/P ratios≥32:1 to form multifunctional nanomicelleplexes. The nanomicelleplexes exhibited spherical shape, possessed a positively charged surface with a zeta potential of +22.5mV and had a desirable and uniform particle size of 187nm. In vitro release studies revealed that the nanomicelleplexes could release DOX and Bcl-2 siRNA in a reduction and pH dual-sensitive manner and the payload release was significantly enhanced in a reductive acidic environment mimicking the endosomes/lysosomes of cancer cells compared to under physiology conditions. Furthermore, the release of both DOX and siRNA was found to follow Higuchi kinetic model. Confocal laser scanning microscopy, flow cytometry and MTT analyses confirmed that, compared with folate-undecorated nanomicelleplexes, folate-decorated nanomicelleplexes could more effectively co-deliver DOX and Bcl-2 siRNA into MCF-7 cells and showed a stronger cell-killing effect. The pristine PEGylated triblock copolymer exhibited good cytocompatibility. Moreover, co-delivery of DOX and Bcl-2 siRNA achieved a significant synergistic antitumor efficacy. These findings suggested that the folate-decorated PEGylated cationic triblock copolymer might be a promising vehicle for targeted intracellular co-delivery of DOX and siRNA in MCF-7 cells, representing a potential clinical combination therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
7
|
Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Ther Deliv 2016; 7:15-31. [PMID: 26652620 DOI: 10.4155/tde.15.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.
Collapse
|
8
|
Saxena S, Jayakannan M. Enzyme and pH dual responsive l
-amino acid based biodegradable polymer nanocarrier for multidrug delivery to cancer cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road; Pune 411008 Maharashtra India
| | - Manickam Jayakannan
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road; Pune 411008 Maharashtra India
| |
Collapse
|