1
|
Cruz M, McKillop S, Tischler V, Lessard BH. Water-Soluble Reversible Photo-Cross-Linking Polymer Dielectrics. Macromol Rapid Commun 2024; 45:e2400205. [PMID: 38871351 DOI: 10.1002/marc.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Effective recycling of mixed materials requires the separation of the different components without the need for toxic solvents. One approach involves utilizing a water-soluble coating with reversible photo-cross-linkers, making it robust until end of life where it can then be dissolved in water after de-cross-linking. Here, a novel coumarin methacrylate monomer and its nitroxide-mediated copolymerization to create poly((methacrylic acid)-co-(styrene sulfonate)-co-(coumarin methacrylate)) for water-soluble thin films are reported. Under exposure to light, the coumarin functional groups produce reversible [2+2] cycloadditions which cross-link the resulting polymer films, making them no longer water soluble. Characterization of reversible cross-linking behavior is reported through changes in contact angle and in situ rheological characterization. The resulting polymers are successfully integrated into metal-insulator-metal capacitors, demonstrating the potential use for water-soluble reversible photo-cross-linkable dielectric materials for organic electronics.
Collapse
Affiliation(s)
- Menandro Cruz
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Sophia McKillop
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Vanessa Tischler
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Faraguna F, Blažic R, Vidović E, Jukić A. Synthesis and properties of surfactants for carbon nanotubes based on copolymers of 2-N-morpholinoethyl methacrylate with dodecyl methacrylate and styrene. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Nawaz HA, Schröck K, Schmid M, Krieghoff J, Maqsood I, Kascholke C, Kohn-Polster C, Schulz-Siegmund M, Hacker MC. Injectable oligomer-cross-linked gelatine hydrogels via anhydride-amine-conjugation. J Mater Chem B 2021; 9:2295-2307. [PMID: 33616150 DOI: 10.1039/d0tb02861d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Injectable gelatine-based hydrogels are valuable tools for drug and cell delivery due to their extracellular matrix-like properties that can be adjusted by the degree of cross-linking. We have established anhydride-containing oligomers for the cross-linking of gelatine via anhydride-amine-conjugation. So far, this conversion required conditions not compatible with cell encapsulation or in vivo injection. In order to overcome this limitation, we developed an array of quarter-oligomers varying in comonomer composition and contents of reactive anhydride units reactive towards amine groups under physiological conditions. The oligomers were of low molecular weight (Mn < 5 kDa) with a high degree of chemically intact anhydrides. Chemical comonomer composition was determined by 1H-NMR. Dissolutions experiments confirmed improved hydrophilicity of the synthesized oligomers over our established compositions. Injectable formulations are described utilizing cytocompatible concentrations of constituent materials and proton-scavenging base. Degree of cross-linking and stiffness of injectable hydrogels were controlled by composition. The gels hold promise as injectable drug or cell carrier and as bioink.
Collapse
Affiliation(s)
- Hafiz Awais Nawaz
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany and Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Abdul Qadir Jillani road, Lahore, Pakistan
| | - Kathleen Schröck
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Maximilian Schmid
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Jan Krieghoff
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Iram Maqsood
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Christian Kascholke
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Straße 15 a, 04317 Leipzig, Germany and Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Seto H, Tono T, Nagaoka A, Yamamoto M, Hirohashi Y, Shinto H. Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction. Org Biomol Chem 2021; 19:4474-4477. [PMID: 33949595 DOI: 10.1039/d1ob00617g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(vinylbiphenyl)s bearing glycoside ligands at the side chains were prepared using the Suzuku coupling reaction. Effects of glycoside reactant concentration, halide species, glycoside species, and catalyst species on the incorporation of glycoside ligand into the polymer were investigated. The obtained glycopolymers exhibited specific binding to proteins corresponding to the glycoside ligands. In addition, the biphenyl spacers formed by the Suzuki coupling reaction in the glycopolymer were fluorescent, whereas the polymer precursor was not.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takumi Tono
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akiko Nagaoka
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mai Yamamoto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yumiko Hirohashi
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiroyuki Shinto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
5
|
Affiliation(s)
- Milan Marić
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| |
Collapse
|
6
|
Highly reprocessable, room temperature self-healable bio-based materials with boronic-ester dynamic cross-linking. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
8
|
Affiliation(s)
- Hailing Liu
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida 32310
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida 32310
| |
Collapse
|
9
|
Savelyeva X, Métafiot A, Li L, Bennett I, Marić M. Stimuli-responsive 4-acryloylmorpholine/4-acryloylpiperidine copolymers via nitroxide mediated polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xeniya Savelyeva
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Adrien Métafiot
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Lucia Li
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Ian Bennett
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Milan Marić
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| |
Collapse
|
10
|
Kannan NB, Lessard BH. Copolymerization of 2,3,4,5,6-Pentafluorostyrene and Methacrylic Acid by Nitroxide-Mediated Polymerization: The Importance of Reactivity Ratios. MACROMOL REACT ENG 2016. [DOI: 10.1002/mren.201600052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nirmal B. Kannan
- Department of Chemical and Biological Engineering; University of Ottawa; 161 Louis Pasteur, Colonel By Building Ottawa Ontario K1N 6N5 Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering; University of Ottawa; 161 Louis Pasteur, Colonel By Building Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|