1
|
Chen X, Cui H, Li H, Wang J, Fu P, Yin J, Tang S, Ke Y. Functionalization of graphene oxide with amphiphilic block copolymer to enhance antibacterial activity. Colloids Surf B Biointerfaces 2024; 234:113690. [PMID: 38086276 DOI: 10.1016/j.colsurfb.2023.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Functionalization of GO with an amphiphilic block copolymer is designed with an aim to enhance its biocompatibility, however, long copolymer chains can screen the blade effect of GO to sacrifice its antimicrobial activities. To solve this problem, low molecular weight of poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and their block copolymer were respectively introduced onto GO via an isophorone diisocyanate modified GO as a intermediate, followed by a solvent evaporation of an oil-in-water emulsion treatment (SE treatment) to induce block copolymer into polymer micelle via phase separation to refresh the sharp edges of GO. Block copolymer modified GO possessed similar dispersibility and stability to PEG modified GO, and even higher loading capacity of the hydrophobic drug than PHBV modified GO, illustrating its superior properties to homopolymer. PEG, PHBV and their block copolymer modified GO were nontoxic towards ATDC5 cells while cultured for 3 days and compatible with erythrocytes within 8 h. SE treatment enhanced greatly the loading capacity of the hydrophobic drug and the accumulative release reached 91.3% within 24 h. The inhibition zone of the block copolymer modified GO was 14.1 mm and 14.8 mm against E. coli and S. aureus, comparable to that of PEG modified GO. The bacterial reduction rate of the copolymer micelle modified GO was 87.1% and 82.7% towards E. coli and S. aureus, much greater than that of PEG, PHBV and their block copolymer modified GO at a concentration of 1 mg/mL. The antibiofilm capacity of the copolymer micelle modified GO were equal to that of PEG modified, demonstrating its great promise in tissue engineering application for repair of infected tissue defects.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Cui
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayin Wang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Yin
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - ShunQing Tang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Graphene oxide grafted hyperbranched poly (vinyl imidazole) with ionic liquid components as a potential carbon dioxide scrubber. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Wang B, Liu FQ. Synthesis and properties of a stimulus-responsive block polymer. RSC Adv 2020; 10:28541-28549. [PMID: 35520037 PMCID: PMC9055828 DOI: 10.1039/d0ra05343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, the synthesis of small molecules and use of an improved “one-pot” method to synthesize the reversible addition–fragmentation chain transfer polymerization (RAFT) reagents have been reported. By comparing with the RAFT reagents synthesized by the traditional “step-by-step” method, it was observed that the reagents synthesized by the two methods had the same structure, however, the improved “one-pot” preparation method results in a significantly higher yield. Subsequently, two different macromolecular CTA segments (PVP-CTA-PVP and PDMAEMA-CTA-PDMAEMA) were prepared by RAFT polymerization, followed by the synthesis of the block polymer PDMAEMA-b-PVP-CTA-PVP-b-PDMAEMA. Through FITR, NMR, GPC and DLS analysis of the block polymer, it was observed that the isotacticity gradually became dominant as the degree of polymerization increased. Further, using NMR spectroscopy to study the effect of pH on the block polymer, the ionization degree of the synthesized polymer in the tumor tissue environment was observed to range between 86.32% to 99.50%, which proved that the synthesized polymers exhibit significant prospects in the medical application. In this study, two different macromolecular CTA segments (PVP-CTA-PVP and PDMAEMA-CTA-PDMAEMA) were prepared by RAFT polymerization, followed by the synthesis of the block polymer PDMAEMA-b-PVP-CTA-PVP-b-PDMAEMA. ![]()
Collapse
Affiliation(s)
- B. Wang
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun 130012
| | - F. Q. Liu
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun 130012
| |
Collapse
|
4
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
5
|
Maity N, Ghosh R, Nandi AK. Optoelectronic Properties of Self-Assembled Nanostructures of Polymer Functionalized Polythiophene and Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7585-7597. [PMID: 29390187 DOI: 10.1021/acs.langmuir.7b04387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this Feature Article, we discuss the variation of optoelectronic properties with the aggregation style of polythiophene (PT) graft copolymers and polymer-modified graphene systems. Grafting of flexible polymers on a PT chain exhibits several self-organized patterns under various conditions, causing different optical and electronic properties, arising from the different conformational states of the conjugated chain. Graphene, a zero band gap material, is functionalized with polymers both covalently and noncovalently to create a finite band gap importing new optoelectronic properties. The polymer-triggered self-assembled nanostructures of PT and graphene-based materials bring unique optical/electronic properties suitable for sensing toxic ions, nitroaromatics, and surfactants, for drug delivery, and also for fabricating molecular logic gates, electronic rectifiers, photocurrent devices, etc.
Collapse
Affiliation(s)
- Nabasmita Maity
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata - 700 032 , India
| | - Radhakanta Ghosh
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata - 700 032 , India
| | - Arun K Nandi
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata - 700 032 , India
| |
Collapse
|
6
|
Maity N, Chakraborty P, Nandi AK. Influence of Chain Length on the Self-Assembly of Poly(ε-caprolactone)-Grafted Graphene Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13384-13393. [PMID: 29099187 DOI: 10.1021/acs.langmuir.7b03269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The multifarious applications of graphene quantum dots (GQDs) necessitate surface modifications to enhance their solution processability. Herein, we report the synthesis and self-assembly of GQDs grafted with poly(ε-caprolactone) (PCL) of different degrees of polymerization (3, 7, 15, and 21) produced from ring-opening polymerization. Optical and morphological studies unveil the transformation of the assemblies from J-aggregates to H-aggregates, accompanied by an alteration in morphology from toroid to spheroid to rodlike structures with increasing chain length of PCL. Functionalized GQDs with lower chain lengths of PCL at higher concentration also assemble into liquid-crystalline phases as observed from birefringent textures, which are later correlated to the formation of columnar hexagonal (Colh) mesophases. However, no such behavior is observed at higher chain lengths of PCL under identical conditions. Therefore, it is evident that the variation in the PCL chain length plays a crucial role in the self-assembly, which is primarily triggered by the van der Waals force between the polymer chains dictating the π stacking of GQDs, resulting in different self- aggregated behavior.
Collapse
Affiliation(s)
- Nabasmita Maity
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata-700032, India
| | - Priyadarshi Chakraborty
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata-700032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata-700032, India
| |
Collapse
|
7
|
Maity N, Kuila A, Nandi AK. Deciphering the Effect of Polymer-Assisted Doping on the Optoelectronic Properties of Block Copolymer-Anchored Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1460-1470. [PMID: 28110538 DOI: 10.1021/acs.langmuir.6b03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Doping facilitates the tuning of band gap, providing an opportunity to tailor the optoelectronic properties of graphene in a simple way, and polymer-assisted doping is a new route to combine the optoelectronic properties of graphene with the properties of a polymer. In this endeavor, a linear diblock copolymer, polycaprolactone-block-poly(dimethyl aminoethyl methacrylate) (PCL13-b-PDMAEMA117) (GPCLD) is grafted from the graphene oxide (GO) surface via consecutive ring opening and atom transfer radical polymerization. GPCLD is characterized using proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transition behavior of the GPCLD solution with varying temperature and pH is monitored using fluorescence spectroscopy and dynamic light scattering. Temperature-dependent 1H NMR spectra at pH 9.2 indicate the influence of temperature on the interaction between GPCLD and solvent (water) molecules causing the phase separation. Fluorescence spectra at pH 4 and 9.2 give the evidence of localized p- and n-type doping of graphene assisted by the pendent PDMAEMA chains. In the impedance spectra of GPCLD films, the Nyquist plots vary with pH; at pH 4, they exhibit a semicircle at higher frequencies and a spike at lower frequencies; at pH 7.0, the spike is replaced by an arc; and at pH 9.2, the semicircle at higher frequencies vanishes and only a spike is noticed, all of these suggesting different types of doping of graphene at different pH values. The dc-conductivity also varies with pH and temperature because of the different types of doping. The current (I)-voltage (V) property of GPCLD at different pH values is very unique: at pH 9.2, an interesting feature of negative differential resistance (NDR) is observed; at pH 7, the rectification property is observed; and at pH 4, again the NDR property is observed. The temperature-dependent I-V property at pH 7 and 9.2 clearly indicates a signature of doping, dedoping, and redoping because of the change in the interaction of GO with the grafted polymer arising from coiling and decoiling of polymer chains.
Collapse
Affiliation(s)
- Nabasmita Maity
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Atanu Kuila
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|