1
|
Anderson IC, Gomez DC, Zhang M, Koehler SJ, Figg CA. Catalyzing PET-RAFT Polymerizations Using Inherently Photoactive Zinc Myoglobin. Angew Chem Int Ed Engl 2025; 64:e202414431. [PMID: 39468874 PMCID: PMC11720391 DOI: 10.1002/anie.202414431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Protein photocatalysts provide a modular platform to access new reaction pathways and affect product outcomes, but their use in polymer synthesis is limited because co-catalysts and/or co-reductants are required to complete catalytic cycles. Herein, we report using zinc myoglobin (ZnMb), an inherently photoactive protein, to mediate photoinduced electron/energy transfer (PET) reversible addition-fragmentation chain transfer (RAFT) polymerizations. Using ZnMb as the sole reagent for catalysis, photomediated polymerizations of N,N-dimethylacrylamide in PBS were achieved with predictable molecular weights, dispersity values approaching 1.1, and high chain-end fidelity. We found that initial apparent rate constants of polymerization increased from 4.6×10-5 s-1 for zinc mesoporpyhrin IX (ZnMIX) to 6.5×10-5 s-1 when ZnMIX was incorporated into myoglobin to yield ZnMb, indicating that the protein binding site enhanced catalytic activity. Chain extension reactions comparing ZnMb-mediated RAFT polymerizations to thermally-initiated RAFT polymerizations showed minimal differences in block copolymer molecular weights and dispersities. This work enables studies to elucidate how protein modifications (e.g., secondary structure folding, site-directed mutagenesis, directed evolution) can be used to modulate polymerization outcomes (e.g., selective monomer additions towards sequence control, tacticity control, molar mass distributions).
Collapse
Affiliation(s)
- Ian C. Anderson
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Darwin C. Gomez
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Meijing Zhang
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - Stephen J. Koehler
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| | - C. Adrian Figg
- Department of Chemistry and Macromolecular Innovation InstituteVirginia TechBlacksburgVirginia24061United States of America
| |
Collapse
|
2
|
Kurowska I, Markiewicz KH, Niemirowicz-Laskowska K, Destarac M, Wielgat P, Misztalewska-Turkowicz I, Misiak P, Car H, Wilczewska AZ. Membrane-Active Thermoresponsive Block Copolymers Containing a Diacylglycerol-Based Segment: RAFT Synthesis, Doxorubicin Encapsulation, and Evaluation of Cytotoxicity against Breast Cancer Cells. Biomacromolecules 2023; 24:4854-4868. [PMID: 37842917 PMCID: PMC10646981 DOI: 10.1021/acs.biomac.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Herein, we report the formation of drug delivery systems from original thermoresponsive block copolymers containing lipid-based segments. Two acrylate monomers derived from palmitic- or oleic-acid-based diacylglycerols (DAGs) were synthesized and polymerized by the reversible addition-fragmentation chain transfer (RAFT) method. Well-defined DAG-based polymers with targeted molar masses and narrow molar mass distributions were next used as macro-chain transfer agents (macro-CTAs) for the polymerization of N-isopropylacrylamide (NIPAAm) or N-vinylcaprolactam (NVCL). The obtained amphiphilic block copolymers were formed into polymeric nanoparticles (PNPs) with and without encapsulated doxorubicin and characterized. Their biological assessment indicated appropriate cytocompatibility with the representatives of normal cells. Furthermore, compared to the free drug, increased cytotoxicity and apoptosis or necrosis induction in breast cancer cells was documented, including a highly aggressive and invasive triple-negative MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Izabela Kurowska
- Faculty
of Chemistry, University of Bialystok, Ciolkowskiego 1K, Bialystok 15-245, Poland
- Doctoral
School of Exact and Natural Sciences, University
of Bialystok, Bialystok 15-245, Poland
| | - Karolina H. Markiewicz
- Faculty
of Chemistry, University of Bialystok, Ciolkowskiego 1K, Bialystok 15-245, Poland
| | | | - Mathias Destarac
- Laboratoire
IMRCP, CNRS UMR 5623, Paul Sabatier University, Toulouse Cedex 09 31062, France
| | - Przemysław Wielgat
- Department
of Clinical Pharmacology, Medical University
of Bialystok, Waszyngtona 15A, Bialystok 15-274, Poland
| | | | - Paweł Misiak
- Faculty
of Chemistry, University of Bialystok, Ciolkowskiego 1K, Bialystok 15-245, Poland
| | - Halina Car
- Department
of Experimental Pharmacology, Medical University
of Bialystok, Szpitalna 37, Bialystok 15-295, Poland
- Department
of Clinical Pharmacology, Medical University
of Bialystok, Waszyngtona 15A, Bialystok 15-274, Poland
| | | |
Collapse
|
3
|
Li Z, Jiang Y, Zhao H, Liu L. Ca 2+-Chelation-Induced Fabrication of Multistimuli-Responsive Charged Nanogels from Phospholipid-Polymer Conjugates and Use for Drug/Protein Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6612-6622. [PMID: 35578744 DOI: 10.1021/acs.langmuir.2c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermoresponsive phospholipid-poly(N-isopropylacrylamide) (PL-PNIPAM) conjugates were synthesized via reversible addition fragmentation chain transfer polymerization mediated by a phospholipid-modified trithiocarbonate. Temperature triggered the micellization of the PL-PNIPAM conjugate to form phosphate group-decorated micelles in the aqueous solution. Driven by the chelation of phospholipids and Ca2+, the PL-PNIPAM conjugate and Ca2+ ions formed size-tunable nanoclusters at a temperature beyond the lower critical solution temperature. To fabricate cross-linked nanogels, NIPAM was copolymerized with N-succinimidyl acrylate (NSA) to obtain the PL-P(NIPAM-co-NSA) conjugate bearing pendent cross-linkable functionalities. Subsequently, the size-controllable nanogels containing disulfide linkages were generated at 37 °C by cross-linking the PL-P(NIPAM-co-NSA)/Ca2+ nanoclusters with cystamine through modulation of Ca2+ concentrations. These negatively charged nanogels demonstrate temperature/pH/reduction triple responsiveness. The nanogels can be efficiently loaded with doxorubicin (DOX) and proteins with various isoelectric points. The DOX-loaded nanogels exhibited a temperature/pH/reduction triple-responsive release profile. The immobilized RNase A, BSA, and GOx retained the protein bioactivity. The release of RNase A-loaded nanogels possesses a temperature-responsive profile. The immobilization of Lys and cytochrome C in nanogels inhibited protein bioactivity. However, the addition of NaCl triggered the recovery of bioactivity. These multistimuli-responsive nanogels can provide a versatile platform applicable in biotechnology and drug/protein delivery.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P.R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
4
|
Membrane-active diacylglycerol-terminated thermoresponsive polymers: RAFT synthesis and biocompatibility evaluation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Catania R, Foralosso R, Spanos L, Russo E, Mastrotto F, Gurnani P, Butler K, Williams H, Stolnik S, Mantovani G. Direct routes to functional RAFT agents from substituted N-alkyl maleimides. Polym Chem 2022. [DOI: 10.1039/d1py01565f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three different routes are presented for the synthesis of functional RAFT agents from N-substituted maleimides, which are then used to synthesise α,β,ω-functional RAFT polymers.
Collapse
Affiliation(s)
- Rosa Catania
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ruggero Foralosso
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lampros Spanos
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Emanuele Russo
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin Butler
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw Williams
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
6
|
Sim XM, Chen C, Goto A. Polymer Coupling via Hetero-Disulfide Exchange and Its Applications to Rewritable Polymer Brushes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24183-24193. [PMID: 33982564 DOI: 10.1021/acsami.1c07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An iodide-terminated polymer (Polymer-I) is converted to a thiol-terminated polymer (Polymer-SH) using HSCH2CH2SH in a remarkably short time (10 min). Polymer-SH is further converted to a pyridyl disulfide-terminated polymer (Polymer-SS-Py). The hetero-coupling of Polymer-SH and Polymer-SS-Py is successfully achieved to quantitatively generate a polymer disulfide (Polymer-SS-Polymer). Exploiting this efficient hetero-coupling technique, Polymer-SH is attached (grafted) on a Py-SS-immobilized surface to generate a polymer brush via a disulfide (-SS-) linkage (writing process). The -SS- linkage is cleaved by the treatment with dithiothreitol (DTT) to detach the polymer from the surface (erasing process). Subsequently, another Polymer-SH is attached on the surface to generate another polymer brush (rewriting process). Thus, a writable, erasable, and rewritable polymer brush surface is achieved. Hydrophilic, hydrophobic, and super-hydrophobic polymers (Polymer-SH) are attached on the surface, tailoring the surface wettability in the writing-erasing-rewriting cycles. Polymer-SH is also attached on a chain-end Py-SS-functionalized polymer brush surface, generating a rewritable block copolymer brush surface. A patterned block copolymer brush surface is also obtained using photo-irradiation and a photo-mask in the erasing process. The metal-free synthetic procedure, accessibility to patterned brushes, and switchable surface properties via the writing-erasing-rewriting process are attractive features of the present approach.
Collapse
Affiliation(s)
- Xuan Ming Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Chen Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
7
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
8
|
Bellotti V, Simonutti R. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials. Polymers (Basel) 2021; 13:1119. [PMID: 33915928 PMCID: PMC8036437 DOI: 10.3390/polym13071119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.
Collapse
Affiliation(s)
| | - Roberto Simonutti
- Department of Materials Science, Università Degli Studi di Milano-Bicocca, Via R. Cozzi, 55, 20125 Milan, Italy;
| |
Collapse
|
9
|
Garra P, Fouassier JP, Lakhdar S, Yagci Y, Lalevée J. Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101277] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
|
11
|
Olson RA, Korpusik AB, Sumerlin BS. Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chem Sci 2020; 11:5142-5156. [PMID: 34122971 PMCID: PMC8159357 DOI: 10.1039/d0sc01544j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Photochemistry has revolutionized the field of polymer-biomacromolecule conjugation. Ligation reactions necessitate biologically benign conditions, and photons have a significant energy advantage over what is available thermally at ambient temperature, allowing for rapid and unique reactivity. Photochemical reactions also afford many degrees of control, specifically, spatio-temporal control, light source tunability, and increased oxygen tolerance. Light-initiated polymerizations, in particular photo-atom-transfer radical polymerization (photo-ATRP) and photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT), have been used for grafting from proteins, DNA, and cells. Additionally, the spatio-temporal control inherent to light-mediated chemistry has been utilized for grafting biomolecules to hydrogel networks for many applications, such as 3-D cell culture. While photopolymerization has clear advantages, there are factors that require careful consideration in order to obtain optimal control. These factors include the photocatalyst system, light intensity, and wavelength. This Perspective aims to discuss recent advances of photochemistry for polymer biomacromolecule conjugation and potential considerations while tailoring these systems.
Collapse
Affiliation(s)
- Rebecca A Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Angie B Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| |
Collapse
|
12
|
Zaborniak I, Chmielarz P, Wolski K, Grzes´ G, Isse AA, Gennaro A, Zapotoczny S, Sobkowiak A. Tannic Acid‐Inspired Star‐Like Macromolecules via Temporally Controlled Multi‐Step Potential Electrolysis. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstan´ców Warszawy 6 35–959 Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstan´ców Warszawy 6 35–959 Rzeszów Poland
| | - Karol Wolski
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30–387 Kraków Poland
| | - Gabriela Grzes´
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30–387 Kraków Poland
| | - Abdirisak A. Isse
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Szczepan Zapotoczny
- Faculty of ChemistryJagiellonian University Gronostajowa 2 30–387 Kraków Poland
| | - Andrzej Sobkowiak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstan´ców Warszawy 6 35–959 Rzeszów Poland
| |
Collapse
|
13
|
Judzewitsch PR, Zhao L, Wong EHH, Boyer C. High-Throughput Synthesis of Antimicrobial Copolymers and Rapid Evaluation of Their Bioactivity. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00290] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lily Zhao
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett 2019; 8:374-380. [PMID: 35651140 DOI: 10.1021/acsmacrolett.9b00089] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this communication, surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT) is introduced. SI-PET-RAFT affords functionalization of surfaces with spatiotemporal control and provides oxygen tolerance under ambient conditions. All hallmarks of controlled radical polymerization (CRP) are met, affording well-defined polymerization kinetics, and chain end retention to allow subsequent extension of active chain ends to form block copolymers. The modularity and versatility of SI-PET-RAFT is highlighted through significant flexibility with respect to the choice of monomer, light source and wavelength, and photoredox catalyst. The ability to obtain complex patterns in the presence of air is a significant contribution to help pave the way for CRP-based surface functionalization into commercial application.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dhanesh Ranaweera
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sergio Rocha
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cyrille Boyer
- School of Chemical Engineering, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Dolinski ND, Page ZA, Discekici EH, Meis D, Lee IH, Jones GR, Whitfield R, Pan X, McCarthy BG, Shanmugam S, Kottisch V, Fors BP, Boyer C, Miyake GM, Matyjaszewski K, Haddleton DM, de Alaniz JR, Anastasaki A, Hawker CJ. What happens in the dark? Assessing the temporal control of photo-mediated controlled radical polymerizations. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2019; 57:268-273. [PMID: 31011240 PMCID: PMC6474683 DOI: 10.1002/pola.29247] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.
Collapse
Affiliation(s)
- Neil D. Dolinski
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Zachariah A. Page
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Emre H. Discekici
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - David Meis
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - In-Hwan Lee
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Glen R. Jones
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Richard Whitfield
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Xiangcheng Pan
- Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Blaine G. McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - Sivaprakash Shanmugam
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | | | - Brett P. Fors
- Department of Chemistry, Cornell University, Ithaca, NY 14850
| | - Cyrille Boyer
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | | | | | - Javier Read de Alaniz
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - Athina Anastasaki
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Craig J. Hawker
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| |
Collapse
|
16
|
Yu L, Wei Y, Tu Y, Lin S, Huang Z, Hu J, Chen Y, Qiao H, Zou W. An oxygen-tolerant photo-induced metal-free reversible addition-fragmentation chain transfer polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Yu
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- The University of the Chinese Academy of Science; Beijing People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Yanlong Wei
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Shudong Lin
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- The University of the Chinese Academy of Science; Beijing People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry; Chinese Academy of Sciences; Guangzhou People's Republic of China
- Key Laboratory of Cellulose and Lignocellulosics Chemistry; Chinese Academy of Sciences; People's Republic of China
- The University of the Chinese Academy of Science; Beijing People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics; Guangzhou People's Republic of China
| | - Yue Chen
- Suzhou Nuclear Power Research Institute; Suzhou People's Republic of China
| | - Hang Qiao
- Suzhou Nuclear Power Research Institute; Suzhou People's Republic of China
| | - Wei Zou
- Suzhou Nuclear Power Research Institute; Suzhou People's Republic of China
| |
Collapse
|
17
|
Ng G, Yeow J, Chapman R, Isahak N, Wolvetang E, Cooper-White JJ, Boyer C. Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01600] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|