1
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Gupta SK, Deshpande AP, Kumar R. Rheological and dielectric behavior of sodium carboxymethyl cellulose (NaCMC)/Ca 2+ and esterified NaCMC/Ca 2+ hydrogels: Correlating microstructure and dynamics with properties. Carbohydr Polym 2024; 335:122049. [PMID: 38616088 DOI: 10.1016/j.carbpol.2024.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyelectrolyte-based conductive hydrogels are being extensively explored for applications in energy storage and as electrode materials for batteries. We synthesized ionically crosslinked sodium carboxymethyl cellulose (NaCMC), esterified NaCMC, and Ca2+ doped esterified NaCMC hydrogels. This work aims to understand the effect of Ca2+ ions on the NaCMC and esterified NaCMC. FTIR, SEM, Rheology and EIS studies were performed to understand the structure and dynamics of hydrogels. Results confirmed that Ca2+ ions have an important role in determining the rheological and dielectric response of hydrogels. Power law behavior was observed in their rheological response with exponent (n) of 0.81 for G' and 0.76 for G″ of ionically crosslinked NaCMC, 5.38 for G' and 4.70 for G″ of esterified NaCMC, whereas, negative exponents -1.44 for G' and -1.10 for G″ of Ca2+ ion doped esterified NaCMC. Ionically crosslinked NaCMC hydrogels have relaxation times (τ) in the range of 8.9 × 10-5 s-2.8 × 10-5 s may be due to the formation of temporary dipoles by electrostatic bridge formations with dc conductivity of (0.1 S/cm-5 S/cm), whereas, esterified NaCMC showed relaxation times (10-3 s-8.9 × 10-5 s) with increasing ester crosslinks and dc conductivity of (0.05 S/cm-0.8 S/cm). Interestingly, Ca2+ ion doped esterified hydrogels showed multiple dielectric relaxations on Ca2+ ion addition with different relaxation times may be due to change in ionic environment. The understanding obtained from this work may be useful for designing tuneable hydrogels with optimum electrical and mechanical properties.
Collapse
Affiliation(s)
- Sateesh Kumar Gupta
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India.
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ranveer Kumar
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
3
|
Wang W, Wang Y, Lü J, Li X. Terahertz Spectroscopic Insight into the Hydrogelation of Copper Ion-Coordinated Poly(vinyl alcohol). Gels 2024; 10:324. [PMID: 38786241 PMCID: PMC11121422 DOI: 10.3390/gels10050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Metal-coordinated hydrogels are becoming increasingly popular in the biomedical field due to their unique properties. However, the mechanism behind gel forming involving metal ions is not yet fully understood. In this work, terahertz spectroscopy was used to investigate the role of interfacial water in the gelation process of copper ion-coordinated poly(vinyl alcohol) hydrogels. The results showed that the binding of copper ions could alter the interfacial hydration dynamics of the poly(vinyl alcohol) polymers. Combined with the results of differential scanning calorimetry (DSC), we propose a possible hydration layer-mediated mechanism for the formation of cooper ion-coordinated hydrogel during the freeze-thaw cycle. These results highlight the value of terahertz spectroscopy as a sensor for studying the hydration process in hydrogels and provide an important clue for understanding the mechanism of hydrogelation in ion-coordinated hydrogels.
Collapse
Affiliation(s)
- Wenjing Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (J.L.)
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadi Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (J.L.)
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xueling Li
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| |
Collapse
|
4
|
Tegopoulos SN, Papagiannopoulos A, Kyritsis A. Hydration effects on thermal transitions and molecular mobility in Xanthan gum polysaccharides. Phys Chem Chem Phys 2024; 26:3462-3473. [PMID: 38205826 DOI: 10.1039/d3cp04643e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this work, the xanthan gum (XG) polysaccharide is studied over a wide range of temperatures and water fractions 0 ≤ hw ≤ 0.70 (on a wet basis) by employing differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The investigation reveals that the critical water fraction for ice formation is about 0.35. Glass transition temperature (Tg) was determined through calorimetry experiments for all the samples studied. Water acts as a strong plasticizer, i.e., decreasing Tg, for water fractions up to about 0.35. A secondary (local) relaxation process is recorded in both dry and hydrated samples, which is sensitive to the presence of water molecules. This fact indicates that this process originates due to the orientation of small polar groups of the side chain, or/and due to the local main chain dynamics. Two types of long-range charge transport processes were resolved. The first is related to the conductive paths being formed via bulk-like ice structures (at high hydration levels), whereas the second can be attributed to proton mobility via the hydrogen bond (HB) network of non-freezing water existing in XG. Interestingly, this process is exactly the same in all the hydrated samples with hw > 0.25. With respect to the sample with hw = 0.27, a Vogel-Tammann-Fulcher (VTF)-like polarization process has also been recorded which seems to be related to long-range charge mobility via interconnected water clusters. As far as we are aware, this is the first time that XG is studied in terms of glass transition and molecular mobility over a wide range of hydration levels combining DSC and BDS techniques.
Collapse
Affiliation(s)
- Sokratis N Tegopoulos
- Physics Department, National Technical University of Athens, Iroon Polytechneiou 9, Zografou Campus, Athens, 15780, Greece.
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Apostolos Kyritsis
- Physics Department, National Technical University of Athens, Iroon Polytechneiou 9, Zografou Campus, Athens, 15780, Greece.
| |
Collapse
|
5
|
Balla E, Zamboulis A, Klonos P, Kyritsis A, Barmpalexis P, Bikiaris DΝ. Synthesis of novel interpenetrated network for ocular co-administration of timolol maleate and dorzolamide hydrochloride drugs. Int J Pharm 2023; 646:123439. [PMID: 37742821 DOI: 10.1016/j.ijpharm.2023.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In the present work, novel interpenetrated networks (IPNs) of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) (SBMA) and poly(vinyl alcohol) (PVA) were prepared for the ocular co-administration of timolol maleate (TIM) and dorzolamide hydrochloride (DORZ), two drugs widely used for the treatment of glaucoma. The successful polymerization of SBMA, in the presence of PVA, led to the formation of semi-interpenetrated pSBMA-PVA networks (IPNs), in the form of sponges, exhibiting intrinsic antimicrobial properties attributed to SBMA. Fourier-transform infrared spectroscopy (FTIR) was utilized to confirm the successful synthesis of the IPNs. Further assessments, including contact angle and water sorption measurements, highlighted their significant hydrophilicity, a feature that makes them suitable for ocular applications. Differential scanning calorimetry (DSC) measurements indicated that PVA serves as a plasticizer, while an assessment of the water sorption capacity of these materials suggested that although the incorporation of PVA results in slightly less hydrophilic materials, the prepared sponges still remain sufficiently hydrophilic for ocular use. Following their characterization, the optimal pSBMA-PVA IPN was used to encapsulate TIM and DORZ. Irritation tests, performed using the HET-CAM method, confirmed that the drug-loaded sponges were safe and potentially well-tolerated for ophthalmic use. Finally, the co-release study for the two drugs revealed a sustained release pattern in both cases, while drug release from the sponges was primarily controlled by diffusion.
Collapse
Affiliation(s)
- Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Panagiotis Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Ν Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
6
|
Debta S, Bhutia SZ, Satapathy DK, Ghosh P. Intrinsic-water desorption induced thermomechanical response of hydrogels. SOFT MATTER 2022; 18:8285-8294. [PMID: 36285568 DOI: 10.1039/d2sm01054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report an interplay between the desorption of intrinsic water and relaxation of polymer chains resulting in an unusual thermomechanical response of a hydrogel, wherein the elastic modulus increases in a certain temperature range followed by a sharp decrease with a further increase in temperature. We establish that, in a hydrogel, the desorption of disparate water types having distinct binding energy affects the consolidation and relaxation behaviour of the matrix, which in turn affects the mechanical properties at different temperature ranges. Using temperature-dependent dielectric relaxation spectroscopy and nanoindentation techniques, the chain dynamics and mechanical properties are investigated.
Collapse
Affiliation(s)
- Sanghamitra Debta
- Nano Mechanics Laboratory, Department of Applied Mechanics, IIT Madras, Chennai-600036, India.
| | - Sonam Zangpo Bhutia
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India.
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India.
| | - Pijush Ghosh
- Nano Mechanics Laboratory, Department of Applied Mechanics, IIT Madras, Chennai-600036, India.
| |
Collapse
|
7
|
Structural and physico-chemical properties of clathrate hydrates of tetraisoamylammonium polyacrylates. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Zhuang X, Zhang S, Ma W. Properties of composite film based on sucrose polyaldehyde cross‐linked polyhydroxyethyl acrylate and starch. J Appl Polym Sci 2022. [DOI: 10.1002/app.53140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuechen Zhuang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian People's Republic of China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian People's Republic of China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian People's Republic of China
| |
Collapse
|
9
|
Mavronasou K, Zamboulis A, Klonos P, Kyritsis A, Bikiaris DN, Papadakis R, Deligkiozi I. Poly(vinyl pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Properties. Polymers (Basel) 2022; 14:polym14040804. [PMID: 35215717 PMCID: PMC8962976 DOI: 10.3390/polym14040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/17/2023] Open
Abstract
A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical properties of the copolymers, and notably the solvation properties, was further studied. The structure of the synthesized polymers and the quaternization degrees were determined by infrared and nuclear magnetic spectroscopies, while their thermal characteristics were studied by differential scanning calorimetry and their thermal stability and degradation by thermogravimetric analysis (TG-DTA). Attention was given to their optical properties, where UV-Vis and diffuse reflectance spectroscopy (DRS) measurements were carried out. The optical band gap of the polymers was calculated and correlated with the degree of quaternization. The study was further orientated towards the solvation properties of the polymers in binary solvent mixtures that strongly depend on the degree of quaternization, enabling a better understanding of the key polymer (solute)-solvent interactions. The assessment of the underlying solvation phenomena was performed in a system of different ratios of DMSO/H2O and the solvatochromic indicator used was Reichardt’s dye. Solvent polarity parameters have a significant effect on the visible spectra of the nitrogen quaternization of PVP studied in this work and a detailed path towards this assessment is presented.
Collapse
Affiliation(s)
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (P.K.); (D.N.B.)
| | - Panagiotis Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (P.K.); (D.N.B.)
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece;
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (P.K.); (D.N.B.)
| | | | - Ioanna Deligkiozi
- Creative Nano PC, 4 Leventi Street, Peristeri, 12132 Athens, Greece;
- Correspondence:
| |
Collapse
|
10
|
Chloramphenicol Loaded Sponges Based on PVA/Nanocellulose Nanocomposites for Topical Wound Delivery. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5080208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present study, polymer sponges based on poly(vinyl alcohol) (PVA) were prepared for the topical wound administration of chloramphenicol (CHL), an antibiotic widely used to treat bacterial infections. Nanocellulose fibrils (CNF) were homogenously dispersed in PVA sponges in three different ratios (2.5, 5, and 10 wt %) to improve the mechanical properties of neat PVA sponges. Infrared spectroscopy showed hydrogen bond formation between CNF and PVA, while scanning electron microscopy photos verified the successful dispersion of CNF to PVA sponges. The addition of CNF successfully enhanced the mechanical properties of PVA sponges, exhibiting higher compressive strength as the content of CNF increased. The PVA sponge containing 10 wt % CNF, due to its higher compression strength, was further studied as a matrix for CHL delivery in 10, 20, and 30 wt % concentration of the drug. X-ray diffraction showed that CHL was encapsulated in an amorphous state in the 10 and 20 wt % samples, while some crystallinity was observed in the 30 wt % ratio. In vitro dissolution studies showed enhanced CHL solubility after its incorporation in PVA/10 wt % CNF sponges. Release profiles showed a controlled release lasting three days for the sample containing 10 wt % CHL and 1.5 days for the other two samples. According to modelling, the release is driven by a pseudo-Fickian diffusion.
Collapse
|
11
|
Lazaridou M, Nanaki S, Zamboulis A, Papoulia C, Chrissafis K, Klonos PA, Kyritsis A, Vergkizi-Nikolakaki S, Kostoglou M, Bikiaris DN. Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. Int J Pharm 2021; 606:120925. [PMID: 34303816 DOI: 10.1016/j.ijpharm.2021.120925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study. SBMA was selected as zwitterion molecule showing promising antibacterial properties. Grafted chitosan derivatives were fully characterized for their successful synthesis by NMR and FT-IR, for their crystallinity by XRD showing reduced crystallinity compared to CS alone. Furthermore, swelling studies were conducted with the grafted derivatives showing extensive swelling capacity (maximum degree of swelling up to 1800%) and water absorption was studied with differential scanning calorimetry and equilibrium water adsorption/desorption isotherms were analyzed. Caspofungin, a novel antifungal drug, was used to prepare a double-acting system, with both antibacterial and antifungal properties, proper for topical use. Drug loaded hydrogels were prepared with 10, 20 and 30 wt% drug content and the loaded hydrogels were fully characterized while antimicrobial studies showed enhanced properties. Caspofungin in vitro release showed an initial burst effect followed by a diffusion process while data analysis verified the initial burst release followed by a quasi Fickian diffusion-driven sustained release. Enhance antimicrobial properties was also observed in caspofungin-loaded hydrogels showing the successful fulfill of our scope; an amphiphilic system having great potential for the development of patches with inherent antimicrobial properties and prolonged antifungal properties.
Collapse
Affiliation(s)
- Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Chrysanthi Papoulia
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | | | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Souzan Vergkizi-Nikolakaki
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Macedonia, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
12
|
Diba M, Koons GL, Bedell ML, Mikos AG. 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials 2021; 274:120871. [PMID: 34029914 PMCID: PMC8196631 DOI: 10.1016/j.biomaterials.2021.120871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Biomaterials-based strategies have shown great promise for tissue regeneration. 3D printing technologies can deliver unprecedented control over architecture and properties of biomaterial constructs when combined with innovative material design strategies. Colloidal gels made of polymeric nanoparticles are attractive injectable and self-healing systems, but their use as bio-inks for extrusion-based printing is largely unexplored. Here, we report 3D printing of novel biomaterial constructs with shape memory behavior using photo-reactive gelatin nanoparticles as colloidal building blocks. These nanoparticles are stabilized with intraparticle covalent crosslinks, and also contain pendant methacryloyl groups as photo-reactive moieties. While non-covalent interactions between nanoparticles enable formation of colloidal gel inks that are printable at room temperature, UV-induced covalent interparticle crosslinks based on methacryloyl moieties significantly enhance mechanical properties of printed constructs. Additionally, the UV crosslinking modality enables remarkable control over swelling, degradation, and biomolecule release behavior of 3D constructs. Finally, by exploiting the mechanical properties of colloidal biomaterials after UV crosslinking, 3D constructs can be designed with shape memory properties, returning to their original programmed geometry upon re-hydration. Accordingly, these novel colloidal inks exhibit great potential to serve as bio-inks for 3D printing of biomaterials with shape-morphing features for a wide range of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mani Diba
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Matthew L Bedell
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
13
|
Yao H, Olsen BD. SANS quantification of bound water in water-soluble polymers across multiple concentration regimes. SOFT MATTER 2021; 17:5303-5318. [PMID: 34013304 DOI: 10.1039/d0sm01962c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-variation small-angle neutron scattering (CV-SANS) is a widely used technique for quantifying hydration water in soft matter systems, but it is predominantly applied in the dilute regime or for systems with a well-defined structure factor. Here, CV-SANS was used to quantify the number of hydration water molecules associating with three water-soluble polymers with different critical solution temperatures and types of water-solute interactions in dilute, semidilute, and concentrated solution through the exploration of novel methods of data fitting and analysis. Multiple SANS fitting workflows with varying levels of model assumptions were evaluated and compared to give insight into SANS model selection. These fitting pathways ranged from general, model-free algorithms to more standard form and structure factor fitting. In addition, Monte Carlo bootstrapping was evaluated as a method to estimate parameter uncertainty through simulation of technical replicates. The most robust fitting workflow for dilute solutions was found to be form factor fitting without CV-SANS (i.e. polymer in 100% D2O). For semidilute and concentrated solutions, while the model-free approach can be mathematically defined for CV-SANS data, the addition of a structure factor imposes physical constraints on the optimization problem, suggesting that the optimal fitting pathway should include appropriate form and structure factor models. The measured hydration numbers were consistent with the number of tightly bound water molecules associated with each monomer unit, and the concentration dependence of the hydration number was largely governed by the chemistry-specific interactions between water and polymer. Polymers with weaker water-polymer interactions (i.e. those with fewer hydration water molecules) were found to have more bound water at higher concentrations than those with stronger water-polymer interactions due to the increase in the number of forced water-polymer contacts in the concentrated system. This SANS-based method to count hydration water molecules can be applied to polymers in any concentration regime, which will lead to improved understanding of water-polymer interactions and their impact on materials design.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
14
|
Thermal and electrical characterization of poly(vinyl)alcohol)/poly(vinylidene fluoride) blends reinforced with nano-graphene platelets. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wolanin J, Giraud J, Payre C, Benoit M, Antonelli C, Quemener D, Tahiri I, Vandamme M, Zanotti JM, Plazanet M. Oedometric-like setup for the study of water transport in porous media by quasi-elastic neutron scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:024106. [PMID: 33648089 DOI: 10.1063/5.0030297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10-9 s-10-12 s. Moreover, it can easily be modified for other scattering techniques.
Collapse
Affiliation(s)
- Julie Wolanin
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Jérôme Giraud
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Claude Payre
- Institut Laue-Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| | - Marianne Benoit
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Claire Antonelli
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Damien Quemener
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Iliass Tahiri
- Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS, 77420 Marne-la-Vallée, France
| | - Matthieu Vandamme
- Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS, 77420 Marne-la-Vallée, France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Marie Plazanet
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
16
|
Christodoulou E, Klonos PA, Tsachouridis K, Zamboulis A, Kyritsis A, Bikiaris DN. Synthesis, crystallization, and molecular mobility in poly(ε-caprolactone) copolyesters of different architectures for biomedical applications studied by calorimetry and dielectric spectroscopy. SOFT MATTER 2020; 16:8187-8201. [PMID: 32789409 DOI: 10.1039/d0sm01195a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we synthesized poly(ε-caprolactone) (PCL) and three copolyesters of different architectures based on three different alcohols, namely a three arm-copolymer based on 1% glycerol (PCL_Gly), a four arm-copolymer based on 1% pentaerythrytol (PCL_PE), and a linear block copolymer based on ∼50% methoxy-poly(ethylene glycol) (PCL_mPEG), all simultaneously with the ring opening polymerization (ROP) of PCL. Due to their biocompatibility and low toxicity, these systems are envisaged for use in drug delivery and tissue engineering applications. Due to the in situ ROP during the copolyesters synthesis, the molecular weight of PCL, Wm initially ∼62 kg mol-1, drops in the copolymers from ∼60k down to ∼5k. For the structure-properties investigation we employed differential scanning calorimetry (DSC and TMDSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier transform infra red (FTIR) spectroscopy, polarized optical microscopy (POM), broadband dielectric spectroscopy (BDS) and isothermal water sorption. DSC revealed that the crystalline fraction of PCL increases whereas the crystallization rate drops in the copolymers in the order PCL ∼ PCL_Gly > PCL_PE ≫ PCL_mPEG, which coincides with that of decreasing Wm. In PCL_mPEG the major amount of PCL (87%) was found to crystallize while the majority of mPEG (92%) was found amorphous exhibiting constrained amorphous mobility and severely slower/weaker crystallization as compared to neat mPEG. Segmental dynamics in BDS, in agreement with DSC, is similar and in general slow for the samples of star-like structure for Wm ≥ 30k arising from PCL, whereas it is severely faster and enhanced in strength for the linear PCL_mPEG (lower Wm) copolymer arising from mPEG. For the latter system, the data provide indications for the formation of complex structures consisting of many small PCL crystallites surrounded by amorphous mPEG segments with constrained dynamics and severely suppressed hydrophilicity. These effects cannot be easily assessed by conventional XRD and POM, confirming the power of the dielectric technique. The overall recordings indicated that the different polymer architecture results in severe changes in the semicrystalline morphology, which demonstrates the potential for tuning the final product performance (permeability, mechanical).
Collapse
Affiliation(s)
- Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Kostas Tsachouridis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
17
|
Karatza A, Klonos P, Pispas S, Kyritsis A. Glass transition and molecular dynamics in PHPMA-b-POEGMA block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Kripotou S, Stefanopoulou E, Culebras-Martínez M, Morales-Román RM, Gallego Ferrer G, Kyritsis A. Water dynamics and thermal properties of tyramine-modified hyaluronic acid - Gelatin hydrogels. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Kripotou S, Zafeiris K, Culebras-Martínez M, Gallego Ferrer G, Kyritsis A. Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:109. [PMID: 31444585 DOI: 10.1140/epje/i2019-11871-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures.
Collapse
Affiliation(s)
- Sotiria Kripotou
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Konstantinos Zafeiris
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Maria Culebras-Martínez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Apostolos Kyritsis
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
20
|
Nita L, Chiriac A, Bercea M, Ghilan A, Rusu A, Dumitriu R, Mititelu-Tartau L. Multifunctional hybrid 3D network based on hyaluronic acid and a copolymer containing pendant spiroacetal moieties. Int J Biol Macromol 2019; 125:191-202. [DOI: 10.1016/j.ijbiomac.2018.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
|
21
|
Niebuur BJ, Lohstroh W, Appavou MS, Schulte A, Papadakis CM. Water Dynamics in a Concentrated Poly(N-isopropylacrylamide) Solution at Variable Pressure. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
22
|
Aloisi A, Pisignano D, Rinaldi R. Nanotechnologies for Neurosciences. POLITO SPRINGER SERIES 2019:81-98. [DOI: 10.1007/978-3-319-71048-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Terekhova IS, Manakov AY, Villevald GV. Structural and physicochemical studies of hydration of crosslinked TBA polyacrylates with different substitution degrees of H +
ions with TBA +
ions. J Appl Polym Sci 2018. [DOI: 10.1002/app.46209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Irina S. Terekhova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS, Acad. Lavrent'ev Avenue; Novosibirsk 630090 Russia
| | - Andrey Yu. Manakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS, Acad. Lavrent'ev Avenue; Novosibirsk 630090 Russia
| | - Galina V. Villevald
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS, Acad. Lavrent'ev Avenue; Novosibirsk 630090 Russia
| |
Collapse
|
24
|
Chen P, Terenzi C, Furó I, Berglund LA, Wohlert J. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions. Biomacromolecules 2018; 19:2567-2579. [DOI: 10.1021/acs.biomac.8b00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pan Chen
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Camilla Terenzi
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - István Furó
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Lars A. Berglund
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
25
|
Biocompatible nanocomposites based on semi-interpenetrating polymer networks and nanosilica modified by bioactive amino acid tryptophan: Morphology, dynamics and properties. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Zhao X, Zhang H, Duan R, Feng Z. The states of water in glutinous rice flour characterized by interpreting desorption isotherm. Journal of Food Science and Technology 2017; 54:1491-1501. [PMID: 28559608 DOI: 10.1007/s13197-017-2580-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 11/26/2022]
Abstract
Water content of glutinous rice flour were determined after equilibrium at water activity (aw) of 0.06-0.98 and temperature of 10, 20 and 30 °C. Distribution of water in different states and its evolution with aw were characterized using four composite models. Interactions of water molecules with solid matrix and themselves were further evaluated. The Park model was a more realistic and mechanism-based approach for describing water desorption of glutinous rice flour. Increased equilibrium water induced by lowering temperature existed mostly as strongly bound water with only a few parts as weakly bound water. The water-polymer thermodynamic incompatibility predominated the water mobility, and resulted in a rapid decrease of diffusion coefficient at aw > ~0.7. Water diffusivity behavior with aw suggested water clustering at high aw levels. The Zimm-Lundberg theory, Park model and Brown analysis all revealed that critical aw of water clustering was of 0.81-0.85, depending on temperature, but gave inconsistent prediction about mean cluster size.
Collapse
Affiliation(s)
- Xuewei Zhao
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450002 Henan Province China
| | - Hua Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450002 Henan Province China
| | - Ruiqian Duan
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Zhiqiang Feng
- Zhengzhou Sanquan Foods Co. Ltd, Zhengzhou, 450044 China
| |
Collapse
|
27
|
Stathopoulos AT, Kyritsis A, Shinyashiki N, Gómez-Ribelles JL, Pissis P. Effects of Solvent Crystallization in Swollen net-Poly(ethyl acrylate) α Relaxation Dynamics. J Phys Chem B 2016; 120:13206-13217. [PMID: 27966958 DOI: 10.1021/acs.jpcb.6b09922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polymer α relaxation process for net-PEA gels swollen with nonpolar p-xylene is studied by employing dielectric relaxation spectroscopy. The results present the in situ monitoring of the dielectric behavior of α relaxation process under p-xylene cold crystallization, isothermal crystallization as well as crystallization from quenching. For the partially crystallized systems, the results exhibit that the amount of p-xylene crystal phase has no remarkable effects on the time scale, being controlled mainly by the amount of the noncrystallized p-xylene (cpx= 0.11-0.15) gel phase. Surprisingly, the stretching exponent βKWW obtains higher values in the isothermal crystallization process as the p-xylene crystallization is in progress and the reorganization of p-xylene through diffusion to crystallites approaches thermodynamic equilibrium. This directly indicates that any α process broadening is originated not solely from the amount of p-xylene crystallites and the induced heterogeneities, but from the presence of remarkable concentration fluctuations close to respective effective glass transition temperature, enhanced for higher solvent contents as well. Finally, the results suggest that the existence of p-xylene crystallites decrease significantly the dielectric strength of α process. The effective medium theory is applied to check whether this recorded reduction originates from the induced spatial heterogeneities (p-xylene crystallites) or from the immobilization in parts of polymer configurations.
Collapse
Affiliation(s)
- Andreas T Stathopoulos
- Department of Physics, National Technical University of Athens , Zografou Campus, 15780 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens , Zografou Campus, 15780 Athens, Greece
| | - Naoki Shinyashiki
- Department of Physics, Tokai University , Hiratsuka, Kanagawa 259-1292, Japan
| | - José Luis Gómez-Ribelles
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politecnica de Valencia , P.O. Box 22012, E-46071 Valencia, Spain.,Regenerative Medicine Unit, Centro de Investigación Príncipe Felipe , Autopista del Saler 16, 46013 Valencia, Spain.,CIBER en Bioingeniería, Biomateriales y Nanomedicina , 46012 Valencia, Spain
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens , Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
28
|
Chi Y, Xu S, Xu X, Cao Y, Dong J. Studies of relationship between polymer structure and hydration environment in amphiphilic polytartaramides. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongmei Chi
- School of Chemistry and Chemical Engineering; Shaoxing University; Shaoxing Zhejiang Province 312000 China
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang Province 315211 China
| | - Songjie Xu
- School of Chemistry and Chemical Engineering; Shaoxing University; Shaoxing Zhejiang Province 312000 China
| | - Xin Xu
- School of Chemistry and Chemical Engineering; Shaoxing University; Shaoxing Zhejiang Province 312000 China
| | - Yuting Cao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang Province 315211 China
| | - Jian Dong
- School of Chemistry and Chemical Engineering; Shaoxing University; Shaoxing Zhejiang Province 312000 China
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo Zhejiang Province 315211 China
| |
Collapse
|
29
|
Reif MM, Zacharias M. Rapid approximate calculation of water binding free energies in the whole hydration domain of (bio)macromolecules. J Comput Chem 2016; 37:1711-24. [DOI: 10.1002/jcc.24390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Maria M. Reif
- Physics Department (T38); Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Martin Zacharias
- Physics Department (T38); Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| |
Collapse
|
30
|
Grossutti M, Dutcher JR. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides. Biomacromolecules 2016; 17:1198-204. [DOI: 10.1021/acs.biomac.6b00026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Grossutti
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John R. Dutcher
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
31
|
Structure-properties investigations in hydrophilic nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks and nanofiller densil for biomedical application. J Appl Polym Sci 2015. [DOI: 10.1002/app.43122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Spagnoli S, Morfin I, Gonzalez MA, Çarçabal P, Plazanet M. Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2554-2560. [PMID: 25652143 DOI: 10.1021/la5045656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dynamics of a physical gel, namely, low-molecular-mass organic gelator methyl-4,6-O-benzylidene-α-D-mannopyranoside (α-manno) in water and toluene, are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a time scale from a few picoseconds to 1 nanosecond, the number of solvent molecules that are immobilized by the rigid network formed by the gelators. We found that only a few toluene molecules per gelator participate in the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic, or π-π interactions, and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilized by the presence of the network. This study shows that neutron scattering can give valuable information about the behavior of solvent confined in a molecular gel.
Collapse
|
33
|
Sekine Y, Takagi H, Sudo S, Kajiwara Y, Fukazawa H, Ikeda-Fukazawa T. Dependence of structure of polymer side chain on water structure in hydrogels. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Plazanet M, Sacchetti F, Petrillo C, Demé B, Bartolini P, Torre R. Water in a polymeric electrolyte membrane: Sorption/desorption and freezing phenomena. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Stamatopoulou C, Klonos P, Koutsoumpis S, Gun'ko V, Pissis P, Karabanova L. Hydrophilic nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) semi-IPNs and modified/unmodified nanosilica for biomedical applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Panagiotis Klonos
- National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | | | - Vladimir Gun'ko
- Institute of Surface Chemistry of National Academy of Sciences of Ukraine; 03164 Kiev Ukraine
| | - Polycarpos Pissis
- National Technical University of Athens; Zografou Campus 15780 Athens Greece
| | - Lyudmyla Karabanova
- Institute of Macromolecular Chemistry of National Academy of Sciences of Ukraine; 02660 Kiev Ukraine
| |
Collapse
|
36
|
|