1
|
Fan M, He W, Li Q, Zhou J, Shen J, Chen W, Yu Y. PTFE Crystal Growth in Composites: A Phase-Field Model Simulation Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6286. [PMID: 36143599 PMCID: PMC9503715 DOI: 10.3390/ma15186286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
We investigated, via a phase-field model simulation, the effects of a matrix's properties and a filler's characters on the polytetrafluoroethylene (PTFE) crystal growth process in composites under various supercooling degrees. The results show that the supercooling degree has a deciding influence on the crystal growth process. The intrinsic properties of PTFE polymer, such as anisotropic strength and phase transition latent heat, affect the growth rate, orientation, and interfacial integrity of the crystal trunk and the branching of the PTFE crystal growth process. The factors of the PTFE crystallization process, such as anisotropic strength and phase translation interface thickness, affect the uniformity and crystallization degree of the PTFE crystal. In the composites, the biphasic interface induces the crystal growth direction via the polymer chain segment migration rate, of which the degree depends on the shapes of the filler and the PTFE crystal nucleus. According to the results, choosing the low molecular weight PTFE and mixture filler with various particle sizes and surface curvatures as the raw materials of PTFE-based composites improves the crystallization of the PTFE matrix.
Collapse
|
2
|
Altorbaq AS, Krauskopf AA, Wen X, Pérez-Camargo RA, Su Y, Wang D, Müller AJ, Kumar SK. Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Ahmadi Khoshooei M, Maham Y. Enthalpic perspective on thermodynamic equilibrium of bulk and confined liquids: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Altorbaq AS, Jimenez AM, Pribyl J, Benicewicz B, Müller AJ, Kumar SK. Polymer Spherulitic Growth Kinetics Mediated by Nanoparticle Assemblies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Andrew M. Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Julia Pribyl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alejandro J. Müller
- POLYMAT and Faculty of Chemistry, Basque Country University, UPV/EHU, Paseo Lardizabal 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Science Foundation, Bilbao 48009, Spain
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Jimenez AM, Altorbaq AS, Müller AJ, Kumar SK. Polymer Crystallization under Confinement by Well-Dispersed Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Andrew M. Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| | - Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| | - Alejandro J. Müller
- POLYMAT and Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Science Foundation, 48011 Bilbao, Spain
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
7
|
Jimenez AM, Krauskopf AA, Pérez-Camargo RA, Zhao D, Pribyl J, Jestin J, Benicewicz BC, Müller AJ, Kumar SK. Effects of Hairy Nanoparticles on Polymer Crystallization Kinetics. Macromolecules 2019; 52:9186-9198. [PMID: 31866692 PMCID: PMC6906929 DOI: 10.1021/acs.macromol.9b01380] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/10/2019] [Indexed: 01/27/2023]
Abstract
We previously showed that nanoparticles (NPs) could be ordered into structures by using the growth rate of polymer crystals as the control variable. In particular, for slow enough spherulitic growth fronts, the NPs grafted with amorphous polymer chains are selectively moved into the interlamellar, interfibrillar, and interspherulitic zones of a lamellar morphology, specifically going from interlamellar to interspherulitic with progressively decreasing crystal growth rates. Here, we examine the effect of NP polymer grafting density on crystallization kinetics. We find that while crystal nucleation is practically unaffected by the presence of the NPs, spherulitic growth, final crystallinity, and melting point values decrease uniformly as the volume fraction of the crystallizable polymer, poly(ethylene oxide) or PEO, ϕPEO, decreases. A surprising aspect here is that these results are apparently unaffected by variations in the relative amounts of the amorphous polymer graft and silica NPs at constant ϕ, implying that chemical details of the amorphous defect apparently only play a secondary role. We therefore propose that the grafted NPs in this size range only provide geometrical confinement effects which serve to set the crystal growth rates and melting point depressions without causing any changes to crystallization mechanisms.
Collapse
Affiliation(s)
- Andrew M Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Alejandro A Krauskopf
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ricardo A Pérez-Camargo
- POLYMAT and Department of Polymer Science and Technology, Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Dan Zhao
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Julia Pribyl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jacques Jestin
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alejandro J Müller
- POLYMAT and Department of Polymer Science and Technology, Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Science Foundation, Bilbao, Spain
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Wen X, Zhao W, Su Y, Wang D. Interfacial effects on crystallization behavior of polymer nanocomposites with polymer‐grafted nanoparticles. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiangning Wen
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Weiwei Zhao
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yunlan Su
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Dujin Wang
- Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Zhao W, Su Y, Wen X, Wang D. Manipulating crystallization behavior of poly(ethylene oxide) by functionalized nanoparticle inclusion. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Investigation on Structural and Dielectric Properties of Silica Nanoparticles Incorporated Poly(Ethylene Oxide)/Poly(Vinyl Pyrrolidone) Blend Matrix Based Nanocomposites. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1034-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
|
12
|
Klonos P, Sulym IY, Sternik D, Konstantinou P, Goncharuk OV, Deryło–Marczewska A, Gun'ko VM, Kyritsis A, Pissis P. Morphology, crystallization and rigid amorphous fraction in PDMS adsorbed onto carbon nanotubes and graphite. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|