1
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Yang X, Forstner M, Rapp CK, Rothenaigner I, Li Y, Hadian K, Griese M. ABCA3 Deficiency-Variant-Specific Response to Hydroxychloroquine. Int J Mol Sci 2023; 24:ijms24098179. [PMID: 37175887 PMCID: PMC10179277 DOI: 10.3390/ijms24098179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Biallelic variants in ABCA3, the gene encoding the lipid transporter ATP-binding cassette subfamily A member 3 (ABCA3) that is predominantly expressed in alveolar type II cells, may cause interstitial lung diseases in children (chILD) and adults. Currently, there is no proven therapy, but, frequently, hydroxychloroquine (HCQ) is used empirically. We hypothesized that the in vitro responsiveness to HCQ might correlate to patients' clinical outcomes from receiving HCQ therapy. The clinical data of the subjects with chILD due to ABCA3 deficiency and treated with HCQ were retrieved from the literature and the Kids Lung Register data base. The in vitro experiments were conducted on wild type (WT) and 16 mutant ABCA3-HA-transfected A549 cells. The responses of the functional read out were assessed as the extent of deviation from the untreated WT. With HCQ treatment, 19 patients had improved or unchanged respiratory conditions, and 20 had respiratory deteriorations, 5 of whom transiently improved then deteriorated. The in vitro ABCA3 functional assays identified two variants with complete response, five with partial response, and nine with no response to HCQ. The variant-specific HCQ effects in vivo closely correlated to the in vitro data. An ABCA3+ vesicle volume above 60% of the WT volume was linked to responsiveness to HCQ; the HCQ treatment response was concentration dependent and differed for variants in vitro. We generated evidence for an ABCA3 variant-dependent impact of the HCQ in vitro. This may also apply for HCQ treatment in vivo, as supported by the retrospective and uncontrolled data from the treatment of chILD due to ABCA3 deficiency.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400044, China
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| |
Collapse
|
3
|
Li Y, Seidl E, Knoflach K, Gothe F, Forstner ME, Michel K, Pawlita I, Gesenhues F, Sattler F, Yang X, Kroener C, Reu-Hofer S, Ley-Zaporozhan J, Kammer B, Krüger-Stollfuß I, Dinkel J, Carlens J, Wetzke M, Moreno-Galdó A, Torrent-Vernetta A, Lange J, Krenke K, Rumman N, Mayell S, Sismanlar T, Aslan A, Regamey N, Proesmans M, Stehling F, Naehrlich L, Ayse K, Becker S, Koerner-Rettberg C, Plattner E, Manali ED, Papiris SA, Campo I, Kappler M, Schwerk N, Griese M. ABCA3 -related interstitial lung disease beyond infancy. Thorax 2023; 78:587-595. [PMID: 36808083 DOI: 10.1136/thorax-2022-219434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND The majority of patients with childhood interstitial lung disease (chILD) caused by pathogenic variants in ATP binding cassette subfamily A member 3 (ABCA3) develop severe respiratory insufficiency within their first year of life and succumb to disease if not lung transplanted. This register-based cohort study reviews patients with ABCA3 lung disease who survived beyond the age of 1 year. METHOD Over a 21-year period, patients diagnosed as chILD due to ABCA3 deficiency were identified from the Kids Lung Register database. 44 patients survived beyond the first year of life and their long-term clinical course, oxygen supplementation and pulmonary function were reviewed. Chest CT and histopathology were scored blindly. RESULTS At the end of the observation period, median age was 6.3 years (IQR: 2.8-11.7) and 36/44 (82%) were still alive without transplantation. Patients who had never received supplemental oxygen therapy survived longer than those persistently required oxygen supplementation (9.7 (95% CI 6.7 to 27.7) vs 3.0 years (95% CI 1.5 to 5.0), p=0.0126). Interstitial lung disease was clearly progressive over time based on lung function (forced vital capacity % predicted absolute loss -1.1% /year) and on chest CT (increasing cystic lesions in those with repetitive imaging). Lung histology pattern were variable (chronic pneumonitis of infancy, non-specific interstitial pneumonia, and desquamative interstitial pneumonia). In 37/44 subjects, the ABCA3 sequence variants were missense variants, small insertions or deletions with in-silico tools predicting some residual ABCA3 transporter function. CONCLUSION The natural history of ABCA3-related interstitial lung disease progresses during childhood and adolescence. Disease-modifying treatments are desirable to delay such disease course.
Collapse
Affiliation(s)
- Yang Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany.,Medical college, Chongqing University, Chongqing, China
| | - Elias Seidl
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Florian Gothe
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Maria Elisabeth Forstner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Katarzyna Michel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Ingo Pawlita
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Florian Gesenhues
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Franziska Sattler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Xiaohua Yang
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Carolin Kroener
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | | | - Julia Ley-Zaporozhan
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Birgit Kammer
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ingrid Krüger-Stollfuß
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julien Dinkel
- German Center for Lung Research (DZL), Munich, Germany.,Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julia Carlens
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany
| | - Martin Wetzke
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba Torrent-Vernetta
- Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joanna Lange
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Nisreen Rumman
- Department of Pediatrics, Makassed Charitable Society Hospital, East Jerusalem, Palestine
| | - Sarah Mayell
- Regional Paediatric CF Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Tugba Sismanlar
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayse Aslan
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Nicolas Regamey
- Pediatric Respiratory Medicine, Children's Hospital, Luzern, Switzerland
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Florian Stehling
- Children's Hospital, Department of Pneumology, University Hospital Essen, Essen, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Sebastian Becker
- Darmstädter Kinderkliniken Prinzessin Margaret, Darmstadt, Germany
| | | | - Erika Plattner
- Universitätsklinikum Erlangen, Children's Hospital, Erlangen, Germany
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, "ATTIKON" University Hospital, Haidari, Greece
| | - Spyridon A Papiris
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, "ATTIKON" University Hospital, Haidari, Greece
| | - Ilaria Campo
- SC Pneumologia - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthias Kappler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany .,German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
4
|
Xu KK, Wegner DJ, Geurts LC, Heins HB, Yang P, Hamvas A, Eghtesady P, Sweet SC, Sessions Cole F, Wambach JA. Biologic characterization of ABCA3 variants in lung tissue from infants and children with ABCA3 deficiency. Pediatr Pulmonol 2022; 57:1325-1330. [PMID: 35170262 PMCID: PMC9148430 DOI: 10.1002/ppul.25862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022]
Abstract
ABCA3 is a phospholipid transporter protein required for surfactant assembly in lamellar bodies of alveolar type II cells. Biallelic pathogenic ABCA3 variants cause severe neonatal respiratory distress syndrome or childhood interstitial lung disease. However, ABCA3 genotype alone does not explain the diversity in disease presentation, severity, and progression. Additionally, monoallelic ABCA3 variants have been reported in infants and children with ABCA3-deficient phenotypes. The effects of most ABCA3 variants identified in patients have not been characterized at the RNA level. ABCA3 allele-specific expression occurs in some cell types due to epigenetic regulation. We obtained lung tissue at transplant or autopsy from 16 infants and children with ABCA3 deficiency due to compound heterozygous ABCA3 variants for biologic characterization of the predicted effects of ABCA3 variants at the RNA level and determination of ABCA3 allele expression. We extracted DNA and RNA from frozen lung tissue and reverse-transcribed cDNA from mRNA. We performed Sanger sequencing to assess allele-specific expression by comparing the heights of variant nucleotide peaks in amplicons from genomic DNA and cDNA. We found similar genomic and cDNA variant nucleotide peak heights and no evidence of allele-specific expression among explant or autopsy samples with biallelic missense ABCA3 variants (n = 6). We observed allele-specific expression of missense alleles in trans with frameshift (n = 4) or nonsense (n = 1) variants, attributable to nonsense-mediated decay. The missense variant c.53 A > G;p.Gln18Arg, located near an exon-intron junction, encoded abnormal splicing with skipping of exon 4. Biologic characterization of ABCA3 variants can inform discovery of variant-specific disease mechanisms.
Collapse
Affiliation(s)
- Kathryn K Xu
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Lucille C Geurts
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Hillary B Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Aaron Hamvas
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pirooz Eghtesady
- Department of Surgery, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Stuart C Sweet
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Shaaban W, Hammoud M, Abdulraheem A, Elsayed YY, Alkazemi N. Hydroxychloroquine, a successful treatment for lung disease in ABCA3 deficiency gene mutation: a case report. J Med Case Rep 2021; 15:54. [PMID: 33526094 PMCID: PMC7851913 DOI: 10.1186/s13256-020-02604-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pulmonary surfactant is a complex mixture of lipids and specific proteins that stabilizes the alveoli at the end of expiration. Mutations in the gene coding for the triphosphate binding cassette transporter A3 (ABCA3), which facilitates the transfer of lipids to lamellar bodies, constitute the most frequent genetic cause of severe neonatal respiratory distress syndrome and chronic interstitial lung disease in children. Hydroxychloroquine can be used as an effective treatment for this rare severe condition. Case presentation We report a late preterm Bosnian baby boy (36 weeks) who suffered from a severe form of respiratory distress syndrome with poor response to intensive conventional management and whole exome sequencing revealed homozygous ABCA3 mis-sense mutation. The baby showed remarkable improvement of the respiratory condition after the initiation of Hydroxychloroquine, Azithromycin and Corticosteroids with the continuation of Hydroxychloroquine as a monotherapy till after discharge from the hospital. Conclusion Outcome in patients with ABCA3 mutations is variable ranging from severe irreversible respiratory failure in early infancy to chronic interstitial lung disease in childhood (ChILD) usually with the need for lung transplantation in many patients surviving this rare disorder. Hydroxychloroquine through its anti-inflammatory effects or alteration of intra-cellular metabolism may have an effect in treating cases of ABCA3 gene mutations.
Collapse
Affiliation(s)
- Waleed Shaaban
- Neonatology Department, Maternity Hospital, Kuwait, Kuwait
| | - Majeda Hammoud
- Paediatrics Department, Faculty of Medicine, Kuwait University, Kuwait, Kuwait.
| | | | | | - Nawal Alkazemi
- Neonatology Department, Maternity Hospital, Kuwait, Kuwait
| |
Collapse
|
6
|
Nathan N, Berdah L, Borensztajn K, Clement A. Chronic interstitial lung diseases in children: diagnosis approaches. Expert Rev Respir Med 2018; 12:1051-1060. [PMID: 30345849 DOI: 10.1080/17476348.2018.1538795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Children interstitial lung disease (chILD) is a heterogeneous group of rare respiratory disorders characterized by inflammatory and fibrotic changes of the lung parenchyma. They include ILD related to exposure/environment insults, ILD related to systemic diseases processes, ILD related to primary lung parenchyma dysfunctions and ILD specific to infancy. Areas covered: This review provides an update on chILD pathophysiology and diagnosis approaches in immunocompetent children. It includes current information on genetic causes. Expert commentary: ChILD covers a large spectrum of entities with heterogeneous disease expression. Various classifications have been reported, but none of them seems completely satisfactory. Recently, progress in molecular genetics has allowed identifying some genetic contributors, with, so far, a lack of correlations between gene disorders and disease expression. Despite improvements in patient management, chILD prognosis is still burdened by significant morbidity and mortality. Ongoing international collaborations will allow gathering larger longitudinal cohorts of patients to improve disease knowledge and personalized care. The overall goal is to help the children with ILD to reach the adulthood transition in a better condition, and to structure genetic counseling for their family.
Collapse
Affiliation(s)
- Nadia Nathan
- a Service de pneumologie pédiatrique, Centre national de référence des maladies respiratoires rares RespiRare , Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France.,b Sorbonne Université and Inserm UMRS933 , Paris , France
| | - Laura Berdah
- a Service de pneumologie pédiatrique, Centre national de référence des maladies respiratoires rares RespiRare , Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France
| | | | - Annick Clement
- a Service de pneumologie pédiatrique, Centre national de référence des maladies respiratoires rares RespiRare , Hôpital Armand Trousseau, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France.,b Sorbonne Université and Inserm UMRS933 , Paris , France
| |
Collapse
|
7
|
Klay D, Hoffman TW, Harmsze AM, Grutters JC, van Moorsel CHM. Systematic review of drug effects in humans and models with surfactant-processing disease. Eur Respir Rev 2018; 27:27/149/170135. [PMID: 29997245 DOI: 10.1183/16000617.0135-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrotic interstitial pneumonias are a group of rare diseases characterised by distortion of lung interstitium. Patients with mutations in surfactant-processing genes, such as surfactant protein C (SFTPC), surfactant protein A1 and A2 (SFTPA1 and A2), ATP binding cassette A3 (ABCA3) and Hermansky-Pudlak syndrome (HPS1, 2 and 4), develop progressive pulmonary fibrosis, often culminating in fatal respiratory insufficiency. Although many mutations have been described, little is known about the optimal treatment strategy for fibrotic interstitial pneumonia patients with surfactant-processing mutations.We performed a systematic literature review of studies that described a drug effect in patients, cell or mouse models with a surfactant-processing mutation. In total, 73 articles were selected, consisting of 55 interstitial lung disease case reports/series, two clinical trials and 16 cell or mouse studies. Clinical effect parameters included lung function, radiological characteristics and clinical symptoms, while experimental outcome parameters included chemokine/cytokine expression, surfactant trafficking, necrosis and apoptosis. SP600125, a c-jun N-terminal kinase (JNK) inhibitor, hydroxychloroquine and 4-phenylbutyric acid were most frequently studied in disease models and lead to variable outcomes, suggesting that outcome is mutation dependent.This systematic review summarises effect parameters for future studies on surfactant-processing disorders in disease models and provides directions for future trials in affected patients.
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Thijs W Hoffman
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ankie M Harmsze
- Dept of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands .,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Pachajoa H, Ruiz-Botero F, Meza-Escobar LE, Villota-Delgado VA, Ballesteros A, Padilla I, Duarte D. Fatal respiratory disease due to a homozygous intronic ABCA3 mutation: a case report. J Med Case Rep 2016; 10:266. [PMID: 27670912 PMCID: PMC5037624 DOI: 10.1186/s13256-016-1027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/09/2016] [Indexed: 11/15/2022] Open
Abstract
Background Pulmonary surfactant is a complex mixture of lipids and proteins. Mutations in surfactant protein-C, surfactant protein-D, and adenosine triphosphate-binding cassette subfamily A member 3 have been related to surfactant dysfunction and neonatal respiratory failure in full-term babies. Adenosine triphosphate-binding cassette subfamily A member 3 facilitates the transfer of lipids to lamellar bodies. We report the case of patient with a homozygous intronic ABCA3 mutation. Case presentation We describe a newborn full-term Colombian baby boy who was the son of non-consanguineous parents of mixed race ancestry (Mestizo), who was delivered with severe respiratory depression. Invasive treatment was unsuccessful and diagnosis was uncertain. Exons 4 and 5 of the SP-C gene showed heterozygous Thr138Asn polymorphism and homozygous Asn186Asn polymorphism respectively. At intron 25 at position –98 from exon 26 a homozygous C>T transition mutation was detected in ABCA3 gene. Conclusions The clinical presentation and the histopathological findings of this case are consistent with a case of neonatal respiratory failure due to surfactant deficiency. Analysis of the five coding SP-C exons does not support surfactant deficiency. An analysis of the mutation IVS25-98 T was performed and a homozygous mutation responsible for our case’s neonatal respiratory failure was detected. The findings suggest an autosomic recessive pattern of inheritance. Genetic counseling was provided and the relatives are now informed of the recurrence risks and treatment options.
Collapse
|
9
|
Kröner C, Wittmann T, Reu S, Teusch V, Klemme M, Rauch D, Hengst M, Kappler M, Cobanoglu N, Sismanlar T, Aslan AT, Campo I, Proesmans M, Schaible T, Terheggen-Lagro S, Regamey N, Eber E, Seidenberg J, Schwerk N, Aslanidis C, Lohse P, Brasch F, Zarbock R, Griese M. Lung disease caused by ABCA3 mutations. Thorax 2016; 72:213-220. [PMID: 27516224 DOI: 10.1136/thoraxjnl-2016-208649] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Knowledge about the clinical spectrum of lung disease caused by variations in the ATP binding cassette subfamily A member 3 (ABCA3) gene is limited. Here we describe genotype-phenotype correlations in a European cohort. METHODS We retrospectively analysed baseline and outcome characteristics of 40 patients with two disease-causing ABCA3 mutations collected between 2001 and 2015. RESULTS Of 22 homozygous (15 male) and 18 compound heterozygous patients (3 male), 37 presented with neonatal respiratory distress syndrome as term babies. At follow-up, two major phenotypes are documented: patients with (1) early lethal mutations subdivided into (1a) dying within the first 6 months or (1b) before the age of 5 years, and (2) patients with prolonged survival into childhood, adolescence or adulthood. Patients with null/null mutations predicting complete ABCA3 deficiency died within the 1st weeks to months of life, while those with null/other or other/other mutations had a more variable presentation and outcome. Treatment with exogenous surfactant, systemic steroids, hydroxychloroquine and whole lung lavages had apparent but many times transient effects in individual subjects. CONCLUSIONS Overall long-term (>5 years) survival of subjects with two disease-causing ABCA3 mutations was <20%. Response to therapies needs to be ascertained in randomised controlled trials.
Collapse
Affiliation(s)
- Carolin Kröner
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Thomas Wittmann
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Simone Reu
- Department of Pathology, LMU Munich, Munich, Germany
| | - Veronika Teusch
- Department of Pediatric Radiology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Mathias Klemme
- Department of Neonatology, Klinikum Großhadern, LMU Munich, Munich, Germany
| | - Daniela Rauch
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Meike Hengst
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Matthias Kappler
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Nazan Cobanoglu
- Department of Pediatric Pneumonology, Ankara University Children's Hospital, Ankara University, Ankara, Turkey
| | | | - Ayse T Aslan
- Gazi University Hospital, Ankara University, Ankara, Turkey
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation and University of Pavia, Pavia, Italy
| | - Marijke Proesmans
- Department of Pediatric Pneumology, University Hospital Leuven, University Leuven, Leuven, Belgium
| | - Thomas Schaible
- Department of Neonatology, University Hospital, University Mannheim, Mannheim, Germany
| | | | - Nicolas Regamey
- Department of Pediatric Pneumology, Children's Hospital, Lucerne, Switzerland
| | - Ernst Eber
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Jürgen Seidenberg
- Department of Pediatric Pneumology and Allergology, Neonatology and Intensive Care, Klinikum Oldenburg, Medical Campus of University Oldenburg, Oldenburg, Germany
| | - Nicolaus Schwerk
- Clinic of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | | - Frank Brasch
- Department of Pathology, Academic Teaching Hospital Bielefeld, Bielefeld, Germany
| | - Ralf Zarbock
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
|
11
|
Children’s Interstitial and Diffuse Lung Disease. Progress and Future Horizons. Ann Am Thorac Soc 2015; 12:1451-7. [DOI: 10.1513/annalsats.201508-558ps] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
12
|
Jackson T, Wegner DJ, White FV, Hamvas A, Cole FS, Wambach JA. Respiratory failure in a term infant with cis and trans mutations in ABCA3. J Perinatol 2015; 35:231-2. [PMID: 25712598 PMCID: PMC4341920 DOI: 10.1038/jp.2014.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/09/2022]
Abstract
A full-term female neonate presented with persistent respiratory failure and radiologic studies consistent with surfactant deficiency. Sequencing of the ATP-binding cassette transporter A3 gene (ABCA3) revealed three mutations: R280C, V1399M and Q1589X. The infant underwent bilateral lung transplantation at 9 months of age and is alive at 3 years of age. Parental sequencing demonstrated that two of the mutations (R280C and Q1589X) were oriented on the same allele (cis), whereas V1399M was oriented on the opposite allele (trans). As more than one mutation in ABCA3 can be present on the same allele, parental studies are needed to determine allelic orientation to inform clinical decision making and future reproductive counseling.
Collapse
Affiliation(s)
- Tara Jackson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel J. Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Frances V. White
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron Hamvas
- Department of Pediatrics, Northwestern University School of Medicine, Chicago, IL, USA
| | - F. Sessions Cole
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Wambach JA, Casey AM, Fishman MP, Wegner DJ, Wert SE, Cole FS, Hamvas A, Nogee LM. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med 2014; 189:1538-43. [PMID: 24871971 DOI: 10.1164/rccm.201402-0342oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recessive mutations in the ATP-binding cassette transporter A3 (ABCA3) cause lethal neonatal respiratory failure and childhood interstitial lung disease. Most ABCA3 mutations are private. OBJECTIVES To determine genotype-phenotype correlations for recessive ABCA3 mutations. METHODS We reviewed all published and unpublished ABCA3 sequence and phenotype data from our prospective genetic studies of symptomatic infants and children at Washington and Johns Hopkins Universities. Mutations were classified based on their predicted disruption of protein function: frameshift and nonsense mutations were classified as "null," whereas missense, predicted splice site mutations, and insertion/deletions were classified as "other." We compared age of presentation and outcomes for the three genotypes: null/null, null/other, and other/other. MEASUREMENTS AND MAIN RESULTS We identified 185 infants and children with homozygous or compound heterozygous ABCA3 mutations and lung disease. All of the null/null infants presented with respiratory failure at birth compared with 75% of infants with null/other or other/other genotypes (P = 0.00011). By 1 year of age, all of the null/null infants had died or undergone lung transplantation compared with 62% of the null/other and other/other children (P < 0.0001). CONCLUSIONS Genotype-phenotype correlations exist for homozygous or compound heterozygous mutations in ABCA3. Frameshift or nonsense ABCA3 mutations are predictive of neonatal presentation and poor outcome, whereas missense, splice site, and insertion/deletions are less reliably associated with age of presentation and prognosis. Counseling and clinical decision making should acknowledge these correlations.
Collapse
Affiliation(s)
- Jennifer A Wambach
- 1 Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|