1
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Li G, Li M, Teng Y, Zhang L, Pang C, Tan J, Chen J, Zhuang J, Zhou C. The alterations of cardiac function during venovenous artificial placenta support in fetal goats. Int J Artif Organs 2024; 47:17-24. [PMID: 38112063 DOI: 10.1177/03913988231215905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Venovenous artificial placenta (VVAP) may mimic the intrauterine environment for maintaining fetal circulation. However, changes in ventricular function in fetal goats undergoing VVAP support remain unclear. METHODS Pump-assisted VVAPs were established in five fetal goats for 9 h. The myocardial performance index (Tei index), cardiac output (CO), and blood biochemical parameters were measured during VVAP support. RESULTS An increasing trend of the right ventricular (RV) Tei index was seen during VVAP support (p for trend < 0.01). The right ventricular cardiac output (RVCO) increased after the initiation of VVAP, while a significant trend of reduction was observed after 3 h (p for trend = 0.03). During VVAP support, we observed remarkable elevations of plasma cTnI and arterial lactic acid, which were positively correlated with the RV Tei index, but not the left ventricular (LV) Tei index, LVCO, and RVCO. CONCLUSIONS The RVCO increases initially while a tendency of decrease could be observed during VVAP support. Special attention should be paid to right ventricular dysfunction during VVAP support.
Collapse
Affiliation(s)
- Guanhua Li
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingliang Li
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yun Teng
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengcheng Pang
- Department of Maternal-Fetal Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Segers S, Romanis EC. Ethical, Translational, and Legal Issues Surrounding the Novel Adoption of Ectogestative Technologies. Risk Manag Healthc Policy 2022; 15:2207-2220. [PMID: 36451704 PMCID: PMC9704017 DOI: 10.2147/rmhp.s358553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 11/08/2023] Open
Abstract
Increasing numbers of research teams are investigating the feasibility of developing artificial amnion and placenta technology (AAPT), commonly referred to as "artificial womb technology". This technology, aimed at supporting ex vivo gestation, has not yet been tested in humans, but it has been stated that we are closer to clinical application than ever before as breakthroughs in animal studies demonstrate good proof of principle. With these proof-of-concept models, further dissemination of AAPT as a research modality is expected. In this review article, we consider the ethical implications of the most imminent anticipated applications for AAPT. We focus specifically on the specific ethical complications regarding the improvements this technology may offer to conventional neonatal intensive care, its potential utility in facilitating prenatal interventions, and some of the broader socio-legal implications such as the debates about abortion access and reproductive and gestational choices. We discuss translational and societal questions when it comes to designing and developing this technology, like commitments to value-sensitive design, along with an examination of the legal and moral status of the entity gestating ex utero, which will be relevant for how it ought to be treated in the context of these various applications. From these perspectives, this review identifies the ethical questions that we believe to be most pressing in the development and potential introduction of AAPT, with due attention to their manifestation as translational and legal issues.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Health, Ethics, and Society, Research Institutes GROW and CAPHRI, Maastricht University, Maastricht, the Netherlands
| | - Elizabeth Chloe Romanis
- Edmond & Lily Safra Center for Ethics and Petrie-Flom Center for Health Law Policy, Biotechnology and Bioethics, Harvard University, Cambridge, MA, USA
- Centre for Law and Ethics in the Life Sciences, Durham University, Durham, UK
| |
Collapse
|
4
|
Segers S. The path toward ectogenesis: looking beyond the technical challenges. BMC Med Ethics 2021; 22:59. [PMID: 33985480 PMCID: PMC8120724 DOI: 10.1186/s12910-021-00630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breakthroughs in animal studies make the topic of human application of ectogenesis for medical and non-medical purposes more relevant than ever before. While current data do not yet demonstrate a reasonable expectation of clinical benefit soon, several groups are investigating the feasibility of artificial uteri for extracorporeal human gestation. MAIN TEXT This paper offers the first comprehensive and up to date discussion of the most important pros and cons of human ectogenesis in light of clinical application, along with an examination of crucial ethical (and legal) issues that continued research into, and the clinical translation of, ectogenesis gives rise to. The expected benefits include advancing prenatal medicine, improving neonatal intensive care, and providing a novel pathway towards biological parenthood. This comes with important future challenges. Prior to human application, important questions have to be considered concerning translational research, experimental use of human fetuses and appropriate safety testing. Key questions are identified regarding risks to ectogenesis' subjects, and the physical impact on the pregnant person when transfer from the uterus to the artificial womb is required. Critical issues concerning proportionality have to be considered, also in terms of equity of access, relative to the envisaged application of ectogenesis. The advent of ectogenesis also comes with crucial issues surrounding abortion, extended fetal viability and moral status of the fetus. CONCLUSIONS The development of human ectogenesis will have numerous implications for clinical practice. Prior to human testing, close consideration should be given to whether (and how) ectogenesis can be introduced as a continuation of existing neonatal care, with due attention to both safety risks to the fetus and pressures on pregnant persons to undergo experimental and/or invasive procedures. Equally important is the societal debate about the acceptable applications of ectogenesis and how access to these usages should be prioritized. It should be anticipated that clinical availability of ectogenesis, possibly first as a way to save extremely premature fetuses, may spark demand for non-medical purposes, like avoiding physical and social burdens of pregnancy.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Blauvelt DG, Abada EN, Oishi P, Roy S. Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs 2021; 45:205-221. [PMID: 32979857 PMCID: PMC8513573 DOI: 10.1111/aor.13827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Extreme prematurity, defined as a gestational age of fewer than 28 weeks, is a significant health problem worldwide. It carries a high burden of mortality and morbidity, in large part due to the immaturity of the lungs at this stage of development. The standard of care for these patients includes support with mechanical ventilation, which exacerbates lung pathology. Extracorporeal life support (ECLS), also called artificial placenta technology when applied to extremely preterm (EPT) infants, offers an intriguing solution. ECLS involves providing gas exchange via an extracorporeal device, thereby doing the work of the lungs and allowing them to develop without being subjected to injurious mechanical ventilation. While ECLS has been successfully used in respiratory failure in full-term neonates, children, and adults, it has not been applied effectively to the EPT patient population. In this review, we discuss the unique aspects of EPT infants and the challenges of applying ECLS to these patients. In addition, we review recent progress in artificial placenta technology development. We then offer analysis on design considerations for successful engineering of a membrane oxygenator for an artificial placenta circuit. Finally, we examine next-generation oxygenators that might advance the development of artificial placenta devices.
Collapse
Affiliation(s)
- David G. Blauvelt
- Department of Pediatrics, University of California, San Francisco, California
| | - Emily N. Abada
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Peter Oishi
- Department of Pediatrics, University of California, San Francisco, California
| | - Shuvo Roy
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
6
|
Usuda H, Watanabe S, Saito M, Ikeda H, Koshinami S, Sato S, Musk GC, Fee E, Carter S, Kumagai Y, Takahashi T, Takahashi Y, Kawamura S, Hanita T, Kure S, Yaegashi N, Newnham JP, Kemp MW. Successful use of an artificial placenta-based life support system to treat extremely preterm ovine fetuses compromised by intrauterine inflammation. Am J Obstet Gynecol 2020; 223:755.e1-755.e20. [PMID: 32380175 DOI: 10.1016/j.ajog.2020.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ex vivo uterine environment therapy is an experimental intensive care strategy for extremely preterm infants born between 21 and 24 weeks of gestation. Gas exchange is performed by membranous oxygenators connected by catheters to the umbilical vessels. The fetus is submerged in a bath of synthetic amniotic fluid. The lungs remain fluid filled, and pulmonary respiration does not occur. Intrauterine inflammation is strongly associated with extremely preterm birth and fetal injury. At present, there are no data that we are aware of to show that artificial placenta-based systems can be used to support extremely preterm fetuses compromised by exposure to intrauterine inflammation. OBJECTIVE To evaluate the ability of our ex vivo uterine environment therapy platform to support extremely preterm ovine fetuses (95-day gestational age; approximately equivalent to 24 weeks of human gestation) exposed to intrauterine inflammation for a period of 120 hours, the following primary endpoints were chosen: (1) maintenance of key physiological variables within normal ranges, (2) absence of infection and inflammation, (3) absence of brain injury, and (4) gross fetal growth and cardiovascular function matching that of age-matched in utero controls. STUDY DESIGN Ten ewes with singleton pregnancies were each given a single intraamniotic injection of 10-mg Escherichia coli lipopolysaccharides under ultrasound guidance 48 hours before undergoing surgical delivery for adaptation to ex vivo uterine environment therapy at 95-day gestation (term=150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with constant monitoring of key vital parameters (ex vivo uterine environment group) before being killed at 100-day equivalent gestational age. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, biochemical parameters, inflammatory markers, and microbial load to exclude infection. Ultrasound was conducted at 48 hours after intraamniotic lipopolysaccharides (before surgery) to confirm fetal viability and at the conclusion of the experiments (before euthanasia) to evaluate cardiac function. Brain injury was evaluated by gross anatomic and histopathologic investigations. Eight singleton pregnant control animals were similarly exposed to intraamniotic lipopolysaccharides at 93-day gestation and were killed at 100-day gestation to allow comparative postmortem analyses (control group). Biobanked samples from age-matched saline-treated animals served as an additional comparison group. Successful instillation of lipopolysaccharides into the amniotic fluid exposure was confirmed by amniotic fluid analysis at the time of administration and by analyzing cytokine levels in fetal plasma and amniotic fluid. Data were tested for mean differences using analysis of variance. RESULTS Six of 8 lipopolysaccharide control group (75%) and 8 of 10 ex vivo uterine environment group fetuses (80%) successfully completed their protocols. Six of 8 ex vivo uterine environment group fetuses required dexamethasone phosphate treatment to manage profound refractory hypotension. Weight and crown-rump length were reduced in ex vivo uterine environment group fetuses at euthanasia than those in lipopolysaccharide control group fetuses (P<.05). There were no biologically significant differences in cardiac ultrasound measurement, differential leukocyte counts (P>.05), plasma tumor necrosis factor α, monocyte chemoattractant protein-1 concentrations (P>.05), or liver function tests between groups. Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment group animals. No cases of intraventricular hemorrhage were observed. White matter injury was identified in 3 of 6 lipopolysaccharide control group fetuses and 3 of 8 vivo uterine environment group fetuses. CONCLUSION We report the use of an artificial placenta-based system to support extremely preterm lambs compromised by exposure to intrauterine inflammation. Our data highlight key challenges (refractory hypotension, growth restriction, and white matter injury) to be overcome in the development and use of artificial placenta technology for extremely preterm infants. As such challenges seem largely absent from studies based on healthy pregnancies, additional experiments of this nature using clinically relevant model systems are essential for further development of this technology and its eventual clinical application.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shota Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Gabrielle C Musk
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Animal Care Services, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erin Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| |
Collapse
|
7
|
Chen F, You Y, Ding P, Wu K, Mo X. Effects of Balanced Ultrafiltration During Extracorporeal Circulation for Children with Congenital Heart Disease on Postoperative Serum Inflammatory Response. Fetal Pediatr Pathol 2020; 39:401-408. [PMID: 31514562 DOI: 10.1080/15513815.2019.1661050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: We studied inflammatory marker changes with ultrafiltration extracorporeal techniques and compared these levels to those occurring during conventional techniques. Methods: Seventy-four children undergoing extracorporeal circulation during congenital heart surgery were divided into two groups-conventional (control) and balanced ultrafiltrations (study). Serum interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and soluble intercellular adhesion molecule-1 (sICAM-1), static lung compliance (Cstat), alveolar-arterial oxygen partial pressure difference (A-aDO2), and oxygenation index (OI) were measured. Results: Thirty minutes after extracorporeal circulation (T1), IL-6 and TNF-α levels significantly increased (p < .05), which plummeted 3 h after surgery (T2). The levels in the study group were lower (p < .05). sICAM-1 levels at T1 and T2 significantly exceeded those at T0, and study group had lower levels (p < .05). At T1, Cstat and OI dropped (p < .05), which increased at T2 (p < .05), and study group had less decreases (p < .05). A-aDO2 at T1 surpassed that before intervention (p < .05), and study group had less increase (p < .05). Conclusion: Balanced ultrafiltration exerts protective effects on children with congenital heart disease undergoing extracorporeal circulation.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiovascular Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yunpeng You
- Outpatient Department, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Peicheng Ding
- Department of Cardiovascular Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kaihong Wu
- Department of Cardiovascular Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiovascular Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Didier RA, Sridharan A, Lawrence K, Coleman BG, Davey MG, Flake AW. Contrast-Enhanced Ultrasound in Extracorporeal Support: In Vitro Studies and Initial Experience and Safety Data in the Extreme Premature Fetal Lamb Maintained by the Extrauterine Environment for Neonatal Development. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:1971-1978. [PMID: 30560564 DOI: 10.1002/jum.14885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To evaluate the effects of ultrasound contrast agent (UCA) administration on hemodynamic parameters and support equipment in in vitro and in vivo models of extracorporeal support. METHODS In vitro, incrementally increasing bolus doses of a UCA were administered proximal to a membrane oxygenator, and ultrasound cine clips were obtained. The rates of microbubble destruction across the oxygenator and over time were calculated from time-intensity-curves. Measurements across the membrane oxygenator were recorded and compared by a repeated-measures analysis of variance. In vivo, 7 premature fetal lambs were transferred from placental support to the extrauterine environment for neonatal development. Contrast agent boluses were administered for contrast-enhanced ultrasound (CEUS) examinations. Hemodynamic parameters and serum laboratory values were evaluated before and after the examinations by paired t tests. For oxygenator staining, oxygenator membranes from the in vitro circuit, study animals (n = 4), and control animals (n = 4) were stained for the adherent UCA. RESULTS In vitro, with all doses (0.1-4 mL), there was no difference in measured parameters across the oxygenator (P ≥ .09). Contrast agent destruction (3%-14%) across the oxygenator was observed at the first pass with a progressive decline in contrast intensity over time. In vivo, there was no difference in hemodynamic parameters or serum laboratory values (P ≥ .08) with any CEUS examination (n = 17). For oxygenator staining, all oxygenator membranes were negative for UCA with lipid staining. CONCLUSIONS The UCA had no detectable effect on the oxygenator or measured parameters in in vitro and in vivo studies, thus providing additional safety data to support the use of CEUS in the setting of extracorporeal support.
Collapse
Affiliation(s)
- Ryne A Didier
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anush Sridharan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kendall Lawrence
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Beverly G Coleman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcus G Davey
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alan W Flake
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Usuda H, Watanabe S, Saito M, Sato S, Musk GC, Fee ME, Carter S, Kumagai Y, Takahashi T, Kawamura MS, Hanita T, Kure S, Yaegashi N, Newnham JP, Kemp MW. Successful use of an artificial placenta to support extremely preterm ovine fetuses at the border of viability. Am J Obstet Gynecol 2019; 221:69.e1-69.e17. [PMID: 30853365 DOI: 10.1016/j.ajog.2019.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ex vivo uterine environment therapy is an experimental life support platform designed to reduce the risk of morbidity and mortality for extremely preterm infants born at the border of viability (21-24 weeks' gestation). To spare the functionally immature lung, this platform performs gas exchange via a membranous oxygenator connected to the umbilical vessels, and the fetus is submerged in a protective bath of artificial amniotic fluid. We and others have demonstrated the feasibility of extended survival with ex vivo uterine environment therapy therapy in late preterm fetuses; however, there is presently no evidence to show that the use of such a platform can support extremely preterm fetuses, the eventual translational target for therapy of this nature. OBJECTIVE The objective of the study was to use our ex vivo uterine environment therapy platform to support the healthy maintenance of 600-700 g/95 days gestational age (equivalent to 24 weeks of human gestation) sheep fetuses. Primary outcome measures were as follows: (1) maintenance of key physiological variables; (2) absence of infection; (3) absence of brain injury; and (4) growth and cardiovascular function patterns matching that of noninstrumented, age-matched in utero controls. STUDY DESIGN Singleton fetuses from 8 ewes underwent surgical delivery at 95 days' gestation (term, 150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with real-time monitoring of key physiological variables. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, inflammation, and microbial load to exclude infection. Brain injury was evaluated by gross anatomical and histopathological approaches after euthanasia. Nine pregnant control animals were euthanized at 100 days' gestation to allow comparative postmortem analyses. Data were tested for mean differences with an analysis of variance. RESULTS Seven of 8 ex vivo uterine environment group fetuses (87.5%) completed 120 hours of therapy with key parameters maintained in a normal physiological range. There were no significant intergroup differences (P > .05) in final weight, crown-rump length, and body weight-normalized lung and brain weights at euthanasia compared with controls. There were no biologically significant differences in hematological parameters (total or differential leucocyte counts and plasma concentration of tumor necrosis factor-α and monocyte chemoattractant protein 1) (P > .05). Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment animals. There was no difference in airspace consolidation between control and ex vivo uterine environment animals, and there was no increase in the number of lung cells staining positive for the T-cell marker CD3. There were no increases in interleukin-1, interleukin-6, interleukin-8, tumor necrosis factor-α, and monocyte chemoattractant protein 1 mRNA expression in lung tissues compared with the control group. No cases of intraventricular hemorrhage were observed, and white matter injury was identified in only 1 ex vivo uterine environment fetus. CONCLUSION For several decades, there has been little improvement in outcomes of extremely preterm infants born at the border of viability. In the present study, we report the use of artificial placenta technology to support, for the first time, extremely preterm ovine fetuses (equivalent to 24 weeks of human gestation) in a stable, growth-normal state for 120 hours. With additional refinement, the data generated by this study may inform a treatment option to improve outcomes for extremely preterm infants.
Collapse
|
10
|
Broman LM. Interhospital Transport on Extracorporeal Membrane Oxygenation of Neonates-Perspective for the Future. Front Pediatr 2019; 7:329. [PMID: 31448250 PMCID: PMC6691167 DOI: 10.3389/fped.2019.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 01/30/2023] Open
Abstract
In recent years the number of extracorporeal membrane oxygenation (ECMO) cases in neonates has been relatively constant. Future expansion lays in new indications for treatment. Regionalization to high-volume ECMO centers allows for optimal utilization of resources, reduction in costs, morbidity, and mortality. Mobile ECMO services available "24-7" are needed to provide effective logistics and reliable infrastructure for patient safety. ECMO transports are usually high-risk and complex. To reduce complications during ECMO transport communication using time-out, checklists, and ECMO A-B-C are paramount in any size mobile program. Team members' education, clinical training, and experience are important. For continuing education, regular wet-lab training, and simulation practices in teams increase performance and confidence. In the future the artificial placenta for the extremely premature infant (23-28 gestational weeks) will be introduced. This will enforce the development and adaptation of ECMO devices and materials for increased biocompatibility to manage the high-risk prem-ECMO (28-34 weeks) patients. These methods will likely first be introduced at a few high-volume neonatal ECMO centers. The ECMO team brings bedside competence for assessment, cannulation, and commencement of therapy, followed by a safe transport to an experienced ECMO center. How transport algorithms for the artificial placentae will affect mobile ECMO is unclear. ECMO transport services in the newborn should firstly be an out-reach service led and provided by ELSO member centers that continuously report transport data to an expansion of the ELSO Registry to include transport quality follow-up and research. For future development and improvement follow-up and sharing of data are important.
Collapse
Affiliation(s)
- Lars Mikael Broman
- Department of Pediatric Perioperative Medicine and Intensive Care, Extracorporeal Membrane Oxygenation Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
12
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Arjan B Te Pas
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Bird SD. Artificial placenta: Analysis of recent progress. Eur J Obstet Gynecol Reprod Biol 2016; 208:61-70. [PMID: 27894031 DOI: 10.1016/j.ejogrb.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022]
Abstract
The artificial placenta (AP) has for many decades captured the imagination of scientists and authors with popular fiction including The Matrix and Aldous Huxley's "Brave New World", depicting a human surviving ex-utero in an artificial uterine environment (AUE). For scientists this has fascinated as a way forward for extremely preterm infants (EPIs) born less than 28 weeks of gestation. Early successes with mechanical ventilation (MV) for infants born above 28 weeks of gestation meant that AP research lost momentum. More recently, the gestational age limit for survival now borders on 23 weeks and corresponds to the biological milestone of lung development marked by the early canalicular stage of lung morphogenesis. The so called greyzone of 23-25 weeks represents a steep increase in mortality with decreasing gestational age and current options in neonatal care are on the fringes of efficacy for this population. A shift in thinking recognizes the vitality of EPIs as a fetus rather than a 37-40 week neonate and this has reinvigorated the concept of the AP. This review will discuss the scale of extreme preterm birth with special reference to previable infants born in the greyzone. Recent AP studies using sheep models are compared, technical obstacles discussed and future research themes identified.
Collapse
Affiliation(s)
- Stephen D Bird
- Department of Obstetrics and Gynaecology, The University of Melbourne, Australia.
| |
Collapse
|
15
|
Mychaliska GB. The artificial placenta: Is clinical translation next? Pediatr Pulmonol 2016; 51:557-9. [PMID: 27092958 PMCID: PMC5266533 DOI: 10.1002/ppul.23412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 02/05/2023]
Affiliation(s)
- George B Mychaliska
- Section of Pediatric Surgery, Department of Surgery, Fetal Diagnosis and Treatment Center, University of Michigan Medical School, C.S. Mott Children's Hospital,, 1540 E. Medical Center Drive, SPC 4211, Ann Arbor, Michigan, 48109
| |
Collapse
|