1
|
Kelchtermans J, Hakonarson H. The role of gene-ambient air pollution interactions in paediatric asthma. Eur Respir Rev 2022; 31:220094. [PMID: 36384702 PMCID: PMC9724879 DOI: 10.1183/16000617.0094-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Globally, asthma prevention and treatment remain a challenge. Ambient air pollution (AAP) is an environmental risk factor of special interest in asthma research. AAP is poorly defined and has been subdivided either by the origin of the air pollution or by the specific bioactive compounds. The link between AAP exposure and asthma exacerbations is well established and has been extensively reviewed. In this narrative review, we discuss the specific genetic variants that have been associated with increased AAP sensitivity and impact in paediatric asthma. We highlight the relative importance of variants associated with genes with a role in oxidant defences and the nuclear factor-κB pathway supporting a potential central role for these pathways in AAP sensitivity.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Yu L, Zhang H, Pan J, Ye L. Pediatric usage of Omalizumab: A promising one. World Allergy Organ J 2021; 14:100614. [PMID: 34963793 PMCID: PMC8672045 DOI: 10.1016/j.waojou.2021.100614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Allergic and related diseases have a substantial epidemiological impact on the pediatric population. Small molecule-based medicines have been traditionally used to manage the diseases. Omalizumab is the first monoclonal antibody-based medicine used in children's allergy and shows great promises. It binds to free IgE and prevents it from binding to IgE receptors, thus interrupting the IgE-dependent allergic inflammatory cascade. Vast amounts of data demonstrate its effectiveness and well tolerance by patients, including the children. However, the drug was only approved to use in allergic asthma and chronic spontaneous urticaria (CSU), though other applications were explored in clinical trials. In this review, we summarized current pediatric applications of omalizumab in allergic diseases, focusing on its usages beyond asthma and CSU, including allergic rhinitis, allergic bronchopulmonary aspergillosis, vernal keratoconjunctivitis, food allergy and atopic dermatitis. In addition, we highlighted the unmet needs and controversial issues of anti-IgE therapy.
Collapse
Affiliation(s)
- Lin Yu
- Department of Pediatrics, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Pan
- Department of Pediatrics, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Nordin S. Mechanisms underlying nontoxic indoor air health problems: A review. Int J Hyg Environ Health 2020; 226:113489. [DOI: 10.1016/j.ijheh.2020.113489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
5
|
Allen JL. Airway function throughout the lifespan: Pediatric origins of adult respiratory disease. Pediatr Investig 2019; 3:236-244. [PMID: 32851329 PMCID: PMC7331336 DOI: 10.1002/ped4.12165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/17/2019] [Indexed: 01/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death of adults in the USA and worldwide. While environmental factors such as smoking and air pollution are major contributors to COPD, pediatric respiratory disease and more specifically early childhood wheezing are frequent predisposing factors. It is therefore possible that aggressive prevention and treatment of childhood respiratory illness may modify adult COPD risk. This article reviews some of the physiological factors that may explain the pediatric origins of childhood lung disease. One such factor is the "tracking" of normal lung function which occurs with growth. The maximal expiratory flow volume (MEFV) curve is an ideally suited tool to monitor tracking of airway function over the lifespan, as its relative effort independence makes it highly reliable. Study of the MEFV curve has demonstrated that individuals with similar lung volumes can have large differences in maximal flows, reflecting a disconnection between airway and lung growth ("dysanapsis"). Less than average airway size due to dysanaptic airway growth or airway remodeling may be independent risk factors for the development of COPD and the asthma/COPD overlap syndrome in adult life. There are intriguing early data suggesting that perhaps at least some of this risk is modifiable by improving asthma control with inhaled corticosteroids and minimizing asthma exacerbations.
Collapse
Affiliation(s)
- Julian Lewis Allen
- Division of Pulmonary MedicineThe Perelman School of Medicine at the University of Pennsylvania and The Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| |
Collapse
|
6
|
Pu Q, Zhao Y, Sun Y, Huang T, Lin P, Zhou C, Qin S, Singh BB, Wu M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-κB signaling. FASEB J 2018; 33:1074-1085. [PMID: 30067380 DOI: 10.1096/fj.201801085r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airway remodeling with progressive epithelial alterations in the respiratory tract is a severe consequence of asthma. Although dysfunctional signaling transduction is attributed to airway inflammation, the exact mechanism of airway remodeling remains largely unknown. TRPC1, a member of the transient receptor potential canonical Ca2+ channel family, possesses versatile functions but its role in airway remodeling remains undefined. Here, we show that ablation of TRPC1 in mice alleviates airway remodeling following house dust mite (HDM) challenge with decreases in mucus production, cytokine secretion, and collagen deposition. HDM challenge induces Ca2+ influx via the TRPC1 channel, resulting in increased levels of signal transducer and activator of transcription 3 (STAT3) and proinflammatory cytokines. In contrast, STAT3 expression was significantly decreased in TRPC1-/- mouse lungs compared with wild-type controls after HDM challenge. Mechanistically, STAT3 promotes epithelial-to-mesenchymal transition and increases mucin 5AC expression. Collectively, these findings identify TRPC1 as a modulator of HDM-induced airway remodeling via STAT3-mediated increase in mucus production, which provide new insight in our understanding of the molecular basis of airway remodeling, and identify novel therapeutic targets for intervention of severe chronic asthma.-Pu, Q., Zhao, Y., Sun, Y., Huang, T., Lin, P., Zhou, C., Qin, S., Singh, B. B., Wu, M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-κB signaling.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyu Zhao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Ting Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA; and
| |
Collapse
|
7
|
Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers 2017; 5:e1367458. [PMID: 28886270 DOI: 10.1080/21688370.2017.1367458] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lungs are in direct contact with the environment through the tubular structure that constitutes the airway. Starting from the nasal orifice, the airway is exposed to foreign particles including infectious agents, allergens, and other substances that can damage the airways. Therefore, the airway must have a functional epithelial barrier both in the upper and lower airways to protect against these threats. As with the skin, it is likely that the pathogenesis of respiratory diseases is a consequence of epithelial barrier defects in these airways. The characteristics of this system, starting from the beginning of life and extending into maturing and aging, determine the prognosis of respiratory diseases. In this article, we discuss the pathogenesis, clinical phenotype, and prognosis of respiratory diseases from newborns to adulthood in the context of epithelial barrier function and dysfunction.
Collapse
Affiliation(s)
- Hasan Yuksel
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Ahmet Turkeli
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| |
Collapse
|
8
|
Goldstein BD, Lauer ME, Caplan AI, Bonfield TL. Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. J Inflamm (Lond) 2017; 14:18. [PMID: 28860944 PMCID: PMC5577750 DOI: 10.1186/s12950-017-0165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that ovalbumin sensitization promotes chronic asthma phenotype in murine asthma model. Human mesenchymal stem cells (hMSCs) are multipotent cells in vitro that have been shown to decrease inflammation and can reverse airway remodeling when infused into an in vivo chronic asthma model. However, the mechanism by which hMSCs reverse remodeling is still unclear. In this study, we hypothesized that hMSCs influence remodeling by decreasing extracellular matrix (ECM) deposition, more specifically by decreasing collagen I, collagen III, and hyaluronan synthesis. METHODS Chronic asthma phenotype was produced in an in vitro model with 3 T3 murine airway fibroblast cells by stimulating with GM-CSF. Collagen I and collagen III gene expression was investigated using RT-PCR and Taqman techniques. Hyaluronan was evaluated using FACE and Western Blots. The chronic asthma phenotype was produced in vivo in murine model using sensitization with ovalbumin with and without hMSC infusion therapy. ECM deposition (specifically trichrome staining, soluble and insoluble collagen deposition, and hyaluronan production) was evaluated. Image quantification was used to monitor trichrome staining changes. RESULTS GM-CSF which induced collagen I and collagen III production was down-regulated with hMSC using co-culture. In the in vivo model, Ovalbumin induced enhanced ECM deposition, soluble and insoluble collagen production, and lung elastance. hMSC infusions decreased ECM deposition as evidenced by decreases in soluble and insoluble collagen production. CONCLUSION hMSCs participate in improved outcomes of remodeling by reversing excess collagen deposition and changing hyaluronan levels.
Collapse
Affiliation(s)
- Benjamin D. Goldstein
- Department of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Mark E. Lauer
- Cleveland Clinic Foundation, Department of Biomedical Engineering, Cleveland, OH USA
| | - Arnold I. Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH USA
| | - Tracey L. Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Sleep Medicine, 10900 Euclid Avenue, Biomedical Research Building #822, Cleveland, OH 44106-4948 USA
| |
Collapse
|
9
|
|
10
|
Ilic N, Mihailovic N. Serum Clara cell protein and atopic phenotype in children up to 2 years of age. J Clin Lab Anal 2017; 31. [PMID: 28146340 DOI: 10.1002/jcla.22151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/26/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low value of serum Clara cell protein (CC16) is associated with bronchial hyperreactivity in children. OBJECTIVE To evaluate the serum CC16 in relation to atopy and previously manifested LRTD. METHODS In the population of 163 healthy 5- to 24-month-old children, atopy was determined by Phadiatop-infant (serum-specific IgE≥0.35 kUA/L), serum CC16 by ELISA, while data on previously manifested low respiratory tract diseases (LRTD) were collected from the Health Care Center database. RESULTS In atopic children, serum CC16 negatively correlated with age (r -.281, P=.041, n=53), while in nonatopic children, this correlation was positive (r .200, P=.036, n=110). Atopic ≥8-month-old children with previously manifested LRTD had lower level of CC16 (3.07 ng/mL) in relation to atopic children without LRTD at the same age (6.51 ng/mL), P=.029 (value of serum CC16≥4.8 ng/mL indicates atopic phenotype without LRTD 75% sensitivity, 87.5% specificity). In 8- to 24-month-old children with previously manifested pneumonia, serum CC16 was lower in atopic (2.9 ng/mL) in relation to nonatopic children (3.7 ng/mL), P=.029 (serum CC16 ≤3.4 ng/mL indicating atopy in the group of children with pneumonia, sensitivity 100%, and specificity 77%). Atopic 8- to 24-month-old children with previously manifested pneumonia had lower CC16 in relation to other atopic children in this age (P=.021) (for cutoff CC16≤3.4 ng/mL sensitivity 100%, specificity 77%), and also often chronic wheezing (atopic with pneumonia 83.3%, n=5/6 vs atopic without pneumonia 21.4%, n=3/14), P=.018. CONCLUSION Low serum CC16 is associated with previously expressed pneumonia and chronic wheezing in atopic children.
Collapse
Affiliation(s)
- Nevenka Ilic
- Department of Allergology and Immunology, Public Health Institute, Kragujevac, Serbia
| | - Natasa Mihailovic
- Department of Biostatistics, Public Health Institute, Kragujevac, Serbia
| |
Collapse
|