1
|
Wang T, Peng B, Luo T, Tian D, Zhao Z, Fu Z, Li Q. ZEB1 recruit Brg1 to regulate airway remodeling epithelial-mesenchymal transition in asthma. Exp Physiol 2022; 107:515-526. [PMID: 35138000 DOI: 10.1113/ep090212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
What is the central question of this study? The aim was to investigate the function of Brg1 in airway remodeling epithelial-mesenchymal transition (EMT) of asthma and identify the transcription factor (TF) of Brg1 which bind to the protomer of E-cadherin. What is the main finding and its importance? This study highlighted an important molecular mechanism involving chromatin remodeling factor Brahma-related gene-1 (Brg1) that played a critical role in airway remodeling EMT of asthma and demonstrated ZEB1 was the key TF recruiting Brg1. This finding might offer new insights into gene-based therapy for asthma. ABSTRACT: Epithelial-mesenchymal transition (EMT) of airway remodeling happens in children with asthma. Reduction of epithelial marker E-cadherin is reported to be one of the initiating factors of EMT. Our previous study shows that chromatin remodeling factor Brahma-related gene-1 (Brg1) could regulate the expression of E-cadherin indirectly, but the transcription factor (TF) involved in the recruitment of Brg1 in asthma is unknown. Here, we studied the function of Brg1 in an ovalbumin (OVA)-induced asthma model (lung-specific conditional Brg1 (Brg1-/- ) knockdown mice) and human bronchial epithelial 16HBE cells stably expressing Brg1 shRNA. Our results showed that Brg1 was involved in epithelial-mesenchymal transition in asthmatic mice by detecting the expression of EMT markers. Meanwhile, we identified that Brg1 participated in the TGF-β induced EMT of 16HBE cells. We observed that Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Brg1 colocalized in the EMT of TGF-β induced 16HBE cells. Further results revealed that ZEB1 recruited Brg1 and bound to the promoter region (+3563/3715) to regulate E-cadherin expression. Thus, ZEB1 might be the key TF to recruit Brg1 in airway remodeling EMT of asthma and might be a novel therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bingming Peng
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingting Luo
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daiyin Tian
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhihua Zhao
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qubei Li
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
2
|
Adel-Patient K, Grauso M, Abou-Taam R, Guillon B, Dietrich C, Machavoine F, Briard M, Garcelon N, Faour H, Neuraz A, Delacourt C, Molina TJ, Leite-de-Moraes M, Lezmi G. A Comprehensive Analysis of Immune Constituents in Blood and Bronchoalveolar Lavage Allows Identification of an Immune Signature of Severe Asthma in Children. Front Immunol 2021; 12:700521. [PMID: 34349761 PMCID: PMC8327906 DOI: 10.3389/fimmu.2021.700521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Targeted approaches may not account for the complexity of inflammation involved in children with severe asthma (SA), highlighting the need to consider more global analyses. We aimed to identify sets of immune constituents that distinguish children with SA from disease-control subjects through a comprehensive analysis of cells and immune constituents measured in bronchoalveolar lavage (BAL) and blood. Methods Twenty children with SA and 10 age-matched control subjects with chronic respiratory disorders other than asthma were included. Paired blood and BAL samples were collected and analyzed for a large set of cellular (eosinophils, neutrophils, and subsets of lymphocytes and innate lymphoid cells) and soluble (chemokines, cytokines, and total antibodies) immune constituents. First, correlations of all immune constituents between BAL and blood and with demographic and clinical data were assessed (Spearman correlations). Then, all data were modelled using supervised multivariate analyses (partial least squares discriminant analysis, PLS-DA) to identify immune constituents that significantly discriminate between SA and control subjects. Univariate analyses were performed (Mann-Whitney tests) and then PLS-DA and univariate analyses were combined to identify the most discriminative and significant constituents. Results Concentrations of soluble immune constituents poorly correlated between BAL and blood. Certain constituents correlated with age or body mass index and, in asthmatics, with clinical symptoms, such as the number of exacerbations in the previous year, asthma control test score, or forced expiratory volume. Multivariate supervised analysis allowed construction of a model capable of distinguishing children with SA from control subjects with 80% specificity and 100% sensitivity. All immune constituents contributed to the model but some, identified by variable-important-in-projection values > 1 and p < 0.1, contributed more strongly, including BAL Th1 and Th2 cells and eosinophilia, CCL26 (Eotaxin 3), IgA and IL-19 concentrations in blood. Blood concentrations of IL-26, CCL13, APRIL, and Pentraxin-3 may also help in the characterization of SA. Conclusions The analysis of a large set of immune constituents may allow the identification of a biological immune signature of SA. Such an approach may provide new leads for delineating the pathogenesis of SA in children and identifying new targets for its diagnosis, prediction, and personalized treatment.
Collapse
Affiliation(s)
- Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Marta Grauso
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Rola Abou-Taam
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
| | - Blanche Guillon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Céline Dietrich
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, Paris, France
| | - François Machavoine
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, Paris, France
| | - Mélanie Briard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Nicolas Garcelon
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France.,AP-HP, Hôpital Necker-Enfants Malades, Service Informatique médicale, Paris, France
| | - Hassan Faour
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France.,AP-HP, Hôpital Necker-Enfants Malades, Service Informatique médicale, Paris, France
| | - Antoine Neuraz
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France.,AP-HP, Hôpital Necker-Enfants Malades, Service Informatique médicale, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
| | - Thierry Jo Molina
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France.,AP-HP, Centre-Université de Paris, hôpital Necker-Enfant-Malades, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Maria Leite-de-Moraes
- Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, Paris, France
| | - Guillaume Lezmi
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France.,Université de Paris, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Inserm UMR1151, CNRS UMR8253, Paris, France
| |
Collapse
|
3
|
Adel‐Patient K, Grauso M, Abou‐Taam R, Guillon B, Dietrich C, Machavoine F, Garcelon N, Briard M, Faour H, Neuraz A, Delacourt C, Molina TJ, Leite‐de‐Moraes M, Lezmi G. Immune signatures distinguish frequent from non-frequent exacerbators among children with severe asthma. Allergy 2021; 76:2261-2264. [PMID: 33544926 DOI: 10.1111/all.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Karine Adel‐Patient
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Marta Grauso
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Rola Abou‐Taam
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
| | - Blanche Guillon
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Céline Dietrich
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - François Machavoine
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - Nicolas Garcelon
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Mélanie Briard
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Hassan Faour
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Antoine Neuraz
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Christophe Delacourt
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
| | - Thierry J. Molina
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Centre‐Université de Paris Hôpital Necker‐Enfant‐Malades Service d'Anatomie et Cytologie Pathologiques Paris France
| | - Maria Leite‐de‐Moraes
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - Guillaume Lezmi
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| |
Collapse
|
4
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
5
|
Liu J, Shang B, Bai J. IL-22/IL-22R1 promotes proliferation and collagen synthesis of MRC-5 cells via the JAK/STAT3 signaling pathway and regulates airway subepithelial fibrosis. Exp Ther Med 2020; 20:2148-2156. [PMID: 32765690 PMCID: PMC7401847 DOI: 10.3892/etm.2020.8931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Asthma in children poses a threat to their health, but the mechanism remains to be elucidated. The present study investigated the mechanism by which the interleukin (IL)-22/IL-22 receptor 1 (IL-22R1) signaling pathway regulates subepithelial fibrosis in children with asthma. A total of 41 children with asthma and 12 healthy children were included in the present study. ELISA was performed to measure the content of IL-22 in peripheral blood. Serum from children with asthma was used to incubate MRC-5 cells and IL-22 antibody rescued the effect of IL-22 on the biological functions of MRC-5 cells. Reverse transcription-quantitative PCR was performed to determine IL-22R1 mRNA expression levels and western blotting was performed to measure IL-22R1 protein expression. The Cell Counting Kit-8 assay was used to analyze cell proliferation and flow cytometry was performed to assess the cell cycle distribution of MRC-5 cells. The expression of IL-22 was elevated in peripheral blood from children with asthma, which promoted the proliferation of MRC-5 cells, possibly via the upregulation of collagen type I α1 chain (COL1α1) and collagen type I α2 chain (COL1α2). IL-22 exerted its biological functions via IL-22R1. The IL-22/IL-22R1 signaling pathway regulated the proliferation of MRC-5 cells and the expression of COL1α1 and COL1α2 in MRC-5 cells via the JAK/STAT3 signaling pathway. Mononuclear lymphocytes from children with asthma stimulated the proliferation and secretory function of fibroblasts by secreting IL-22. The present study suggested that IL-22 expression in peripheral blood of children with asthma is upregulated compared with the control group. Furthermore, the present study indicated that the IL-22/IL-22R1 signaling pathway promoted MRC-5 cell proliferation and collagen synthesis by activating the JAK/STAT3 signaling pathway, thereby potentially regulating airway subepithelial fibrosis.
Collapse
Affiliation(s)
- Juan Liu
- Department of Pediatrics, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Biao Shang
- Department of Pediatrics, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jing Bai
- Department of Pediatrics, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|