1
|
Tyagi SC, Pushpakumar S, Sen U, Mokshagundam SPL, Kalra DK, Saad MA, Singh M. COVID-19 Mimics Pulmonary Dysfunction in Muscular Dystrophy as a Post-Acute Syndrome in Patients. Int J Mol Sci 2022; 24:ijms24010287. [PMID: 36613731 PMCID: PMC9820572 DOI: 10.3390/ijms24010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1β, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.
Collapse
Affiliation(s)
- Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sri Prakash L. Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dinesh K. Kalra
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mohamed A. Saad
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Correspondence: or
| |
Collapse
|
2
|
Trucco F, Ridout D, Domingos J, Maresh K, Chesshyre M, Munot P, Sarkozy A, Robb S, Quinlivan R, Riley M, Wallis C, Chan E, Abel F, De Lucia S, Hogrel JY, Niks EH, de Groot I, Servais L, Straub V, Ricotti V, Manzur A, Muntoni F. Genotype-related respiratory progression in Duchenne muscular dystrophy-A multicenter international study. Muscle Nerve 2021; 65:67-74. [PMID: 34606104 DOI: 10.1002/mus.27427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION/AIMS Mutations amenable to skipping of specific exons have been associated with different motor progression in Duchenne muscular dystrophy (DMD). Less is known about their association with long-term respiratory function. In this study we investigated the features of respiratory progression in four DMD genotypes relevant in ongoing exon-skipping therapeutic strategies. METHODS This was a retrospective longitudinal study including DMD children followed by the UK NorthStar Network and international AFM Network centers (May 2003 to October 2020). We included boys amenable to skip exons 44, 45, 51, or 53, who were older than 5 years of age and ambulant at first recorded visit. Subjects who were corticosteroid-naive or enrolled in interventional clinical trials were excluded. The progression of respiratory function (absolute forced vital capacity [FVC] and calculated as percent predicted [FVC%]) was compared across the four subgroups (skip44, skip45, skip51, skip53). RESULTS We included 142 boys in the study. Mean (standard deviation) age at first visit was 8.6 (2.5) years. Median follow-up was 3 (range, 0.3-8.3) years. In skip45 and skip51, FVC% declined linearly from the first recorded visit. From the age of 9 years, FVC% declined linearly in all genotypes. Skip44 had the slowest (2.7%/year) and skip51 the fastest (5.9%/year) annual FVC% decline. The absolute FVC increased progressively in skip44, skip45, and skip51. In skip53, FVC started declining from 14 years of age. DISCUSSION The progression of respiratory dysfunction follows different patterns for specific genotype categories. This information is valuable for prognosis and for the evaluation of exon-skipping therapies.
Collapse
Affiliation(s)
- Federica Trucco
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK.,Department Paediatric Neuroscience, Guy's and St Thomas NHS Trust and Department Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Deborah Ridout
- Population, Policy and Practice Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Joana Domingos
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kate Maresh
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Mary Chesshyre
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Rosaline Quinlivan
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK.,MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - Mollie Riley
- Lung Function Laboratory, Great Ormond Street Hospital, London, UK
| | - Colin Wallis
- Department of Respiratory Medicine, Great Ormond Street Hospital, London, UK
| | - Elaine Chan
- Department of Respiratory Medicine, Great Ormond Street Hospital, London, UK
| | - Francois Abel
- Department of Respiratory Medicine, Great Ormond Street Hospital, London, UK
| | | | | | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Imelda de Groot
- Department of Rehabilitation, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurent Servais
- Centre de Référence Des Maladies Neuromusculaires, CHU de Liège, Liège, Belgium.,Department of Paediatrics, MDUK Neuromuscular Center, University of Oxford, Oxford, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Valeria Ricotti
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | | |
Collapse
|