1
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
2
|
Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress. Sci Rep 2018; 8:13904. [PMID: 30224719 PMCID: PMC6141510 DOI: 10.1038/s41598-018-32272-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
Encoded by EEF1A1, the eukaryotic translation elongation factor eEF1α1 strongly promotes the heat shock response, which protects cancer cells from proteotoxic stress, following for instance oxidative stress, hypoxia or aneuploidy. Unexpectedly, therefore, we find that EEF1A1 mRNA levels are reduced in virtually all breast cancers, in particular in ductal carcinomas. Univariate and multivariate analyses indicate that EEF1A1 mRNA underexpression independently predicts poor patient prognosis for estrogen receptor-positive (ER+) cancers. EEF1A1 mRNA levels are lowest in the most invasive, lymph node-positive, advanced stage and postmenopausal tumors. In sharp contrast, immunohistochemistry on 100 ductal breast carcinomas revealed that at the protein level eEF1α1 is ubiquitously overexpressed, especially in ER+ , progesterone receptor-positive and lymph node-negative tumors. Explaining this paradox, we find that EEF1A1 mRNA levels in breast carcinomas are low due to EEF1A1 allelic copy number loss, found in 27% of tumors, and cell cycle-specific expression, because mRNA levels are high in G1 and low in proliferating cells. This also links estrogen-induced cell proliferation to clinical observations. In contrast, high eEF1α1 protein levels protect tumor cells from stress-induced cell death. These observations suggest that, by obviating EEF1A1 transcription, cancer cells can rapidly induce the heat shock response following proteotoxic stress, and survive.
Collapse
|
3
|
Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc Natl Acad Sci U S A 2016; 113:1381-6. [PMID: 26787912 DOI: 10.1073/pnas.1523434113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine.
Collapse
|
4
|
Guo X, Xiong L, Yu L, Li R, Wang Z, Ren B, Dong J, Li B, Wang D. Increased level of nucleolin confers to aggressive tumor progression and poor prognosis in patients with hepatocellular carcinoma after hepatectomy. Diagn Pathol 2014; 9:175. [PMID: 25230759 PMCID: PMC4177041 DOI: 10.1186/s13000-014-0175-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/23/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Nucleolin, as a multifunctional protein, has been demonstrated to play an oncogenic role in human hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression pattern of nucleolin in HCC and determine its correlation with tumor progression and prognosis. METHODS Nucleolin expression at both mRNA and protein levels in HCC and adjacent nonneoplastic tissues were respectively detected by quantitative real time polymerase chain reaction (Q-PCR), immunohistochemistry and western blotting. RESULTS Nucleolin expression, at both mRNA and protein levels, was significantly higher in HCC tissues than in the adjacent nonneoplastic tissues (both P<0.001). In addition, the elevated nucleolin expression was markedly correlated with advanced tumor stage (P=0.001), high tumor grade (P=0.02) and serum AFP level (P=0.008). Moreover, HCC patients with high nucleolin expression had shorter 5-year disease-free survival and shorter 5-year overall survival than those with low expression (both P<0.001). Furthermore, the Cox proportional hazards model showed that nucleolin expression was an independent poor prognostic factor for both 5-year disease-free survival (hazards ratio [HR]=3.696, 95% confidence interval [CI] = 1.662-8.138, P=0.01) and 5-year overall survival (HR=3.872, CI=1.681-8.392, P=0.01) in HCC. CONCLUSION These results showed that the markedly and consistently increasing expression of nucleolin may be associated with aggressive characteristics of HCC, and implied that nucleolin expression may serve as a promising biochemical marker for predicting the clinical outcome of patients with this malignancy. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_175.
Collapse
Affiliation(s)
| | - Lu Xiong
- />Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | | | - Ruisheng Li
- />302 Hospital of PLA, Beijing, 100039 China
| | | | - Bo Ren
- />302 Hospital of PLA, Beijing, 100039 China
| | | | - Boan Li
- />302 Hospital of PLA, Beijing, 100039 China
| | - Dadong Wang
- />Department of Hepatobiliary and Pancreaticosplenic Surgery, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048 China
| |
Collapse
|
5
|
Zuo S, Xue Y, Tang S, Yao J, Du R, Yang P, Chen X. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J Proteome Res 2010; 9:3465-78. [PMID: 20462248 DOI: 10.1021/pr9011377] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation is tightly regulated by nuclear factor-kappa B (NF-kappaB), and if left unchecked excessive NF-kappaB activation for cytokine overproduction can lead to various pathogenic consequences including carcinogenesis. A proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), can be used to explore possible mechanisms whereby unknown functional pathways modulate the NF-kappaB activity for regulating TNF-alpha-induced inflammation. Given the multifunctional nature of 14-3-3 family proteins and the recent finding of their presence in the TNF-alpha/NF-kappaB pathway network, we used a dual-tagging quantitative proteomic method to first profile the TNF-alpha-inducible interacting partners of 14-3-3 epsilon, the least characterized 14-3-3 isomer in the family. For the first time, we found that TNF-alpha stimulation enhances the interactions between 14-3-3 epsilon and some key components in the mitogen-activated protein kinase (MAPK) signal module which is located at the immediate upstream of NF-kappaB, including transforming growth factor-beta activated kinase-1 (TAK1) and its interacting protein, protein phosphatase 2C beta (PPM1B). By using confocal laser scanning, we observed the TNF-alpha-induced colocalizations among 14-3-3 epsilon, TAK1, and protein phosphatase 2C beta (PPM1B), and these interactions were also TNF-alpha-inducible in different cell types. Further, we found that during the full course of the cellular response to TNF-alpha, the interactions between 14-3-3 epsilon and these two proteins were dynamic and were closely correlated with the time course-dependent changes in NF-kappaB activity, suggesting that these 14-3-3 epsilon interactions are the critical points of convergence for TNF-alpha signaling for modulating NF-kappaB activity. We then postulated a mechanistic view describing how 14-3-3 epsilon coordinates its dynamic interactions with TAK1 and PPM1B for differentially modulating TNF-alpha-induced changes in NF-kappaB activity. By using bioinformatics tools, we constructed the network involving most of the 14-3-3 epsilon interacting proteins identified in our proteomic study. We revealed that 14-3-3 epsilon coordinates the cross talks between the MAPK signal module and other molecular pathways/biological processes primarily including protein metabolism and synthesis, DNA repair, and cell cycle regulation where pharmacological targets for therapeutic intervention could be systematically located.
Collapse
Affiliation(s)
- Shuai Zuo
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Santos HM, Glez-Peña D, Reboiro-Jato M, Fdez-Riverola F, Diniz MS, Lodeiro C, Capelo-Martínez JL. A novel 18O inverse labeling-based workflow for accurate bottom-up mass spectrometry quantification of proteins separated by gel electrophoresis. Electrophoresis 2010; 31:3407-19. [DOI: 10.1002/elps.201000251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Yang X, Zou P, Yao J, Yun D, Bao H, Du R, Long J, Chen X. Proteomic dissection of cell type-specific H2AX-interacting protein complex associated with hepatocellular carcinoma. J Proteome Res 2010; 9:1402-15. [PMID: 20000738 DOI: 10.1021/pr900932y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The replacement histone variant H2AX senses DNA double-strand breaks (DSBs) and recruits characteristic sets of proteins at its phosphorylated (gamma-H2AX) foci for concurrent DNA repair. We reasoned that the H2AX interaction network, or interactome, formed in the tumor-associated DNA DSB environment such as in hepatocellular carcinoma (HCC) cells, where preneoplastic lesions frequently occur, is indicative of HCC pathogenic status. By using an in vivo dual-tagging quantitative proteomic method, we identified 102 H2AX-specific interacting partners in HCC cells that stably expressed FLAG-tagged H2AX at close to the endogenous level. Using bioinformatics tools for data-dependent network analysis, we further found binary relationships among these interactors in defined pathway modules, implicating H2AX in a multifunctional role of coordinating a variety of biological pathways involved in DNA damage recognition and DNA repair, apoptosis, nucleic acid metabolism, Ca(2+)-binding signaling, cell cycle, etc. Furthermore, our observations suggest that these pathways interconnect through key pathway components or H2AX interactors. The physiological accuracy of our quantitative proteomic approach in determining H2AX-specific interactors was evaluated by both coimmunoprecipitation/ immunoblotting and confocal colocalization experiments performed on HCC cells. Due to their involvement in diverse functions, the H2AX interactors involved in different pathway modules, such as Poly(ADP-ribose) polymerase 1, 14-3-3 zeta, coflin 1, and peflin 1, were examined for their relative H2AX binding affinities in paired hepatocytes and HCC cells. Treatment with the DSB-inducing agent bleomycin enhanced binding of these proteins to H2AX, suggesting an active role of H2AX in coordinating the functional pathways of each protein in DNA damage recognition and repair.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Du R, Long J, Yao J, Dong Y, Yang X, Tang S, Zuo S, He Y, Chen X. Subcellular Quantitative Proteomics Reveals Multiple Pathway Cross-Talk That Coordinates Specific Signaling and Transcriptional Regulation for the Early Host Response to LPS. J Proteome Res 2010; 9:1805-21. [DOI: 10.1021/pr900962c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruyun Du
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Jing Long
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Jun Yao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Yun Dong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Xiaoli Yang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Siwei Tang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Shuai Zuo
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Yufei He
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Xian Chen
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China, and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|