1
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
2
|
Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, Yang Y, Gao X, Li F, Wu H, Zhang S, Chen L. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer 2018; 18:911. [PMID: 30241505 PMCID: PMC6151070 DOI: 10.1186/s12885-018-4806-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Traditional therapeutics have encountered a bottleneck caused by diagnosis delay and subjective and unreliable assessment. Biomarkers can overcome this bottleneck and guide us toward personalized precision medicine for oral squamous cell carcinoma. To achieve this, it is important to efficiently and accurately screen out specific biomarkers from among the huge number of molecules. Progress in omics-based high-throughput technology has laid a solid foundation for biomarker discovery. With credible and systemic biomarker models, more precise and personalized diagnosis and assessment would be achieved and patients would be more likely to be cured and have a higher quality of life. However, this is not straightforward owing to the complexity of molecules involved in tumorigenesis. In this context, there is a need to focus on tumor heterogeneity and homogeneity, which are discussed in detail. In this review, we aim to provide an understanding of biomarker discovery and application for precision medicine of oral squamous cell carcinoma, and have a strong belief that biomarker will pave the road toward future precision medicine.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yutong Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yaocheng Yang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fangjie Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
4
|
Reddy PJ, Atak A, Ghantasala S, Kumar S, Gupta S, Prasad TSK, Zingde SM, Srivastava S. Proteomics research in India: an update. J Proteomics 2015; 127:7-17. [PMID: 25868663 DOI: 10.1016/j.jprot.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
Abstract
After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurva Atak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saicharan Ghantasala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saurabh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shabarni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore 560066, India
| | - Surekha M Zingde
- CH3-53 Kendriya Vihar, Kharghar, Navi Mumbai, 410210, India. http://www.psindia.org
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Lee JJ, Yeh CY, Jung CJ, Chen CW, Du MK, Yu HM, Yang CJ, Lin HY, Sun A, Ko JY, Cheng SJ, Chang YL, Chia JS. Skewed distribution of IL-7 receptor-α-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PLoS One 2014; 9:e85521. [PMID: 24465587 PMCID: PMC3900423 DOI: 10.1371/journal.pone.0085521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
CD8+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7−CD45RA−CD8+ T cells and CCR7− CD45RA+CD8+ T cells negatively correlated with each other. A significantly higher frequency of CD127lo CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells among total CD8+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127hi CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127lo CCR7−CD45RA−CD8+ T cells or CCR7−CD45RA+CD8+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7−CD45RA+CD8+ T cells to CCR7−CD45RA−CD8+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127lo CCR7−CD45RA−CD8+ T cells and CCR7−CD45RA+CD8+ T cells are functionally similar CD8+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8+ effector memory balance toward CCR7−CD45RA+CD8+ T cells is associated with OSCC progression.
Collapse
Affiliation(s)
- Jang-Jaer Lee
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chiou-Yueh Yeh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chiau-Jing Jung
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ching-Wen Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mao-Kuang Du
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ming Yu
- Genomic Research Center, Academic Sinica, Taipei, Taiwan, ROC
| | - Chia-Ju Yang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Andy Sun
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shih Jung Cheng
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yen-Liang Chang
- Fu Jen Catholic University, School of Medicine, and Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan, ROC
| | - Jean-San Chia
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
6
|
Ciregia F, Giusti L, Molinaro A, Niccolai F, Agretti P, Rago T, Di Coscio G, Vitti P, Basolo F, Iacconi P, Tonacchera M, Lucacchini A. Presence in the pre-surgical fine-needle aspiration of potential thyroid biomarkers previously identified in the post-surgical one. PLoS One 2013; 8:e72911. [PMID: 24023790 PMCID: PMC3759451 DOI: 10.1371/journal.pone.0072911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023] Open
Abstract
Fine-needle aspiration biopsy (FNA) is usually applied to distinguish benign from malignant thyroid nodules. However, cytological analysis cannot always allow a proper diagnosis. We believe that the improvement of the diagnostic capability of pre-surgical FNA could avoid unnecessary thyroidectomy. In a previous study, we performed a proteome analysis to examine FNA collected after thyroidectomy. With the present study, we examined the applicability of these results on pre-surgical FNA. We collected pre-surgical FNA from 411 consecutive patients, and to obtain a correct comparison with our previous results, we processed only benign (n = 114), papillary classical variant (cPTC) (n = 34) and papillary tall cell variant (TcPTC) (n = 14) FNA. We evaluated levels of five proteins previously found up-regulated in thyroid cancer with respect to benign nodules. ELISA and western blot (WB) analysis were used to assay levels of L-lactate dehydrogenase B chain (LDHB), Ferritin heavy chain, Ferritin light chain, Annexin A1 (ANXA1), and Moesin in FNA. ELISA assays and WB analysis confirmed the increase of LDHB, Moesin, and ANXA1 in pre-surgical FNA of thyroid papillary cancer. Sensitivity and specificity of ANXA1 were respectively 87 and 94% for cPTC, 85 and 100% for TcPTC. In conclusion, a proteomic analysis of FNA from patients with thyroid nodules may help to distinguish benign versus malignant thyroid nodules. Moreover, ANXA1 appears to be an ideal candidate given the high sensitivity and specificity obtained from ROC curve analysis.
Collapse
Affiliation(s)
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Angelo Molinaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Niccolai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Agretti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Teresa Rago
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giancarlo Di Coscio
- Section of Cytopathology, University of Pisa and Pisa University Hospital, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Pietro Iacconi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
7
|
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2:12. [PMID: 23594883 PMCID: PMC3640925 DOI: 10.1186/2162-3619-2-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors.
Collapse
Affiliation(s)
- Patrizia Ceruti
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Moitza Principe
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Michela Capello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Pranay A, Shukla S, Kannan S, Malgundkar SA, Govekar RB, Patil A, Kane SV, Chaturvedi P, D'Cruz AK, Zingde SM. Prognostic utility of autoantibodies to α-enolase and Hsp70 for cancer of the gingivo-buccal complex using immunoproteomics. Proteomics Clin Appl 2013; 7:392-402. [DOI: 10.1002/prca.201200081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Atul Pranay
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| | - Sanjeev Shukla
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| | - Sadhana Kannan
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| | - Siddhi A. Malgundkar
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| | - Rukmini B. Govekar
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| | | | - Shubhada V. Kane
- Tata Memorial Hospital; Tata Memorial Centre; Parel; Mumbai; India
| | | | - Anil K. D'Cruz
- Tata Memorial Hospital; Tata Memorial Centre; Parel; Mumbai; India
| | - Surekha M. Zingde
- Advanced Centre for Treatment; Research and Education in Cancer (ACTREC); Tata Memorial Centre; Kharghar; Navi Mumbai; India
| |
Collapse
|
9
|
Sajnani MR, Patel AK, Bhatt VD, Tripathi AK, Ahir VB, Shankar V, Shah S, Shah TM, Koringa PG, Jakhesara SJ, Joshi CG. Identification of novel transcripts deregulated in buccal cancer by RNA-seq. Gene 2012; 507:152-8. [PMID: 22846364 DOI: 10.1016/j.gene.2012.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
Abstract
The differential transcriptome analysis provides better understanding of molecular pathways leading to cancer, which in turn allows designing the effective strategies for diagnosis, therapeutic intervention and prediction of therapeutic outcome. This study describes the transcriptome analysis of buccal cancer and normal tissue by CLC Genomics Workbench from the data generated by Roche's 454 sequencing platform, which identified total of 1797 and 2655 genes uniquely expressed in normal and cancer tissues, respectively with 2466 genes expressed in both tissues. Among the genes expressed in both tissues, 1842 were up-regulated whereas 624 were down-regulated in cancer tissue. Besides transcripts known to be involved in cancer, this study led to the identification of novel transcripts, with significantly altered expression in buccal cancer tissue, providing potential targets for diagnosis and cancer therapeutics. The functional categorization by the KEGG pathway and gene ontology analysis revealed enrichment of differentially expressed transcripts to various pathways leading to cancer, including the p53 signaling pathway. Moreover, the gene ontology analysis unfolded suppression of transcripts involved in actin mediated cell contraction process. The down-regulation of four of these transcripts MYL1, ACTA1, TCAP and DESMIN in buccal cancer were further supported by quantitative PCR signifying its possible implication in the cancer progression.
Collapse
Affiliation(s)
- Manisha R Sajnani
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand-388 001, Gujarat, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Increased density of prohibitin-immunoreactive oligodendrocytes in the dorsolateral prefrontal white matter of subjects with schizophrenia suggests extraneuronal roles for the protein in the disease. Neuromolecular Med 2012; 14:270-80. [PMID: 22711522 DOI: 10.1007/s12017-012-8185-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/01/2012] [Indexed: 12/22/2022]
Abstract
Prohibitin has previously been implicated in the synaptic pathology of schizophrenia. The recently discovered abundant expression of prohibitin in human prefrontal oligodendrocytes raises the issue, whether this protein might also be part of the well-known white matter abnormalities in schizophrenia. Hence, post-mortem brains of ten patients with schizophrenia and ten matched control cases were investigated. Using a direct, 3D-counting technique we morphometrically analyzed the number and density of prohibitin-immunoreactive oligodendroglial cells in the left and right dorsolateral, anterior cingulate, and orbitofrontal cortex white matter. Additionally, we studied the prohibitin expression in different neuronal and non-neuronal cell populations in rat cell cultures. We could confirm the strong expression of prohibitin in oligodendrocytes. Intracellularly, the protein was localized to mitochondria and some cell nuclei. In schizophrenia, the numerical density of prohibitin-expressing oligodendrocytes was significantly increased in the right dorsolateral white matter area. Taking into consideration the dual intracellular localization of prohibitin in oligodendrocyte mitochondria and cell nuclei, one may suggest an involvement of the protein in mitochondrial dysfunction and/or cycle abnormalities in schizophrenia.
Collapse
|
11
|
Eryptotic phenotype in chronic myeloid leukemia: contribution of neutrophilic cathepsin g. Anemia 2012; 2012:659303. [PMID: 22506108 PMCID: PMC3312197 DOI: 10.1155/2012/659303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/16/2011] [Accepted: 12/22/2011] [Indexed: 11/22/2022] Open
Abstract
In pathological conditions with concurrent neutrophilia, modifications of erythrocyte membrane proteins are reported. In chronic myeloid leukemia (CML), a myeloproliferative disease wherein neutrophilia is accompanied by enhanced erythrophagocytosis, we report for the first time excessive cleavage of erythrocyte band 3. Distinct fragments of band 3 serve as senescent cell antigens leading to erythrophagocytosis. Using immunoproteomics, we report the identification of immunogenic 43 kDa fragment of band 3 in 68% of CML samples compared to their detection in only 38% of healthy individuals. Thus, excessive fragmentation of band 3 in CML, detected in our study, corroborated with the eryptotic phenotype. We demonstrate the role of neutrophilic cathepsin G, detected as an immunogen on erythrocyte membrane, in band 3 cleavage. Cathepsin G from serum adsorbs to the erythrocyte membrane to mediate cleavage of band 3 and therefore contribute to the eryptotic phenotype in CML.
Collapse
|
12
|
Gadewal NS, Zingde SM. Database and interaction network of genes involved in oral cancer: Version II. Bioinformation 2011; 6:169-70. [PMID: 21572887 PMCID: PMC3092954 DOI: 10.6026/97320630006169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022] Open
Abstract
The oral cancer gene database has been compiled to enable fast retrieval of updated information and role of the genes implicated in oral cancer. The first version of the database with 242 genes was published in Online Journal of Bioinformatics 8(1), 41-44, 2007. In the second version, the database has been enlarged to include 374 genes by adding 132 gene entries. The architecture and format of the database is similar to the earlier version, and includes updated information and external hyperlinks for all the genes. The functional gene interaction network for important biological processes and molecular functions has been rebuilt based on 374 genes using 'String 8.3'. The database is freely available at http://www.actrec.gov.in/OCDB/index.htm and provides the scientist information and external links for the genes involved in oral cancer, interactions between them, and their role in the biology of oral cancer along with clinical relevance.
Collapse
Affiliation(s)
- Nikhil Sureshkumar Gadewal
- Bioinformatics centre (BTIS Sub-DIC), ACTREC, Kharghar, Navi Mumbai 410210, India
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Surekha Mahesh Zingde
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|
13
|
Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H. The use of chemometrics to analyse protein patterns from gel electrophoresis. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Reddy PJ, Jain R, Paik YK, Downey R, Ptolemy AS, Ozdemir V, Srivastava S. Personalized Medicine in the Age of Pharmacoproteomics: A Close up on India and Need for Social Science Engagement for Responsible Innovation in Post-Proteomic Biology. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:67-75. [PMID: 22279515 PMCID: PMC3264661 DOI: 10.2174/187569211794728850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Panga Jaipal Reddy
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rekha Jain
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Biomedical Proteome Research Center, and Department of Biomedical Sciences, World Class University Program, Yonsei University, Seoul, Korea
| | | | - Adam S. Ptolemy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Vural Ozdemir
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
15
|
Capello M, Ferri-Borgogno S, Cappello P, Novelli F. α-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278:1064-74. [PMID: 21261815 DOI: 10.1111/j.1742-4658.2011.08025.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
α-enolase (ENOA) is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a plasminogen receptor and thus mediates activation of plasmin and extracellular matrix degradation. In tumor cells, ΕΝΟΑ is upregulated and supports anaerobic proliferation (Warburg effect), it is expressed at the cell surface, where it promotes cancer invasion, and is subjected to a specific array of post-translational modifications, namely acetylation, methylation and phosphorylation. Both ENOA overexpression and its post-translational modifications could be of diagnostic and prognostic value in cancer. This review will discuss recent information on the biochemical, proteomics and immunological characterization of ENOA, particularly its ability to trigger a specific humoral and cellular immune response. In our opinion, this information can pave the way for effective new therapeutic and diagnostic strategies to counteract the growth of the most aggressive human disease.
Collapse
Affiliation(s)
- Michela Capello
- Department of Medicine and Experimental Oncology, Center for Experimental Research and Medical Studies (CeRMS), San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|