1
|
Abstract
We tested the ability of platelet-derived extracellular vesicles (PEV) to promote adhesion of flowing neutrophils to endothelial cells (EC). PEV were collected from platelets stimulated with collagen-related peptide, and differential centrifugation was used to collect larger vesicles enriched for platelet membrane microvesicles (PMV) or smaller vesicles enriched for platelet exosomes (Pexo). Vesicle binding and resultant activation of neutrophils and EC were assessed by flow cytometry. Flow-based adhesion assays assessed binding of neutrophils directly to deposited vesicles or to EC, after neutrophils or EC had been treated with vesicles. PEV bound efficiently to neutrophils or EC, with resultant upregulation of activation markers. Binding was Ca++-dependent and dominantly mediated by CD62P for neutrophils or by integrins for EC. Deposited PEV supported mainly transient attachments of flowing neutrophils through CD62P and some stable adhesion through CXC-chemokines. Neutrophil adhesion to EC was promoted when either cell was pre-treated with PEV, although the effect was less prominent when EC were pre-activated with tumor necrosis factor-α. The pro-adhesive effects on neutrophils could largely be attributed to the larger PMV rather than Pexo. Thus, surface-bound PEV can capture flowing neutrophils, while PEV also activate neutrophils and EC to promote interactions. PEV may potentiate inflammatory responses after tissue injury.
Collapse
|
2
|
Babur Ö, Ngo ATP, Rigg RA, Pang J, Rub ZT, Buchanan AE, Mitrugno A, David LL, McCarty OJT, Demir E, Aslan JE. Platelet procoagulant phenotype is modulated by a p38-MK2 axis that regulates RTN4/Nogo proximal to the endoplasmic reticulum: utility of pathway analysis. Am J Physiol Cell Physiol 2018; 314:C603-C615. [PMID: 29412690 PMCID: PMC6008067 DOI: 10.1152/ajpcell.00177.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Upon encountering physiological cues associated with damaged or inflamed endothelium, blood platelets set forth intracellular responses to ultimately support hemostatic plug formation and vascular repair. To gain insights into the molecular events underlying platelet function, we used a combination of interactome, pathway analysis, and other systems biology tools to analyze associations among proteins functionally modified by reversible phosphorylation upon platelet activation. While an interaction analysis mapped out a relative organization of intracellular mediators in platelet signaling, pathway analysis revealed directional signaling relations around protein kinase C (PKC) isoforms and mitogen-activated protein kinases (MAPKs) associated with platelet cytoskeletal dynamics, inflammatory responses, and hemostatic function. Pathway and causality analysis further suggested that platelets activate a specific p38-MK2 axis to phosphorylate RTN4 (reticulon-4, also known as Nogo), a Bcl-xl sequestration protein and critical regulator of endoplasmic reticulum (ER) physiology. In vitro, we find that platelets drive a p38-MK2-RTN4-Bcl-xl pathway associated with the regulation of the ER and platelet phosphatidylserine exposure. Together, our results support the use of pathway tools in the analysis of omics data sets as a means to help generate novel, mechanistic, and testable hypotheses for platelet studies while uncovering RTN4 as a putative regulator of platelet cell physiological responses.
Collapse
Affiliation(s)
- Özgün Babur
- Department of Molecular and Medical Genetics, Oregon Health & Science University , Portland, Oregon
- Computational Biology Program, Oregon Health & Science University , Portland, Oregon
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Rachel A Rigg
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Zhoe T Rub
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Ariana E Buchanan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University , Portland, Oregon
- Division of Hematology & Medical Oncology, Oregon Health & Science University , Portland, Oregon
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University , Portland, Oregon
- Computational Biology Program, Oregon Health & Science University , Portland, Oregon
| | - Joseph E Aslan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
3
|
Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP. What can proteomics tell us about platelets? Circ Res 2014; 114:1204-19. [PMID: 24677239 DOI: 10.1161/circresaha.114.301598] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.
Collapse
Affiliation(s)
- Julia M Burkhart
- From the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.M.B., A.S., R.P.Z); Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Würzburg, Germany (S.G.); Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (S.G.); Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.P.W.); Center for Thrombosis and Hemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany (K.J., U.W.); Medizinisches Proteom Center, Ruhr Universität Bochum, Bochum, Germany (A.S.); Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom (A.S.); and Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands (J.W.M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Prudent M, D’Alessandro A, Cazenave JP, Devine DV, Gachet C, Greinacher A, Lion N, Schubert P, Steil L, Thiele T, Tissot JD, Völker U, Zolla L. Proteome Changes in Platelets After Pathogen Inactivation—An Interlaboratory Consensus. Transfus Med Rev 2014; 28:72-83. [DOI: 10.1016/j.tmrv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
5
|
Zufferey A, Ibberson M, Reny JL, Xenarios I, Sanchez JC, Fontana P. Unraveling modulators of platelet reactivity in cardiovascular patients using omics strategies: Towards a network biology paradigm. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|