1
|
Rombouts KB, van Merrienboer TAR, Henneman AA, Knol JC, Pham TV, Piersma SR, Jimenez CR, Bogunovic N, van der Velden J, Yeung KK. Insight in the (Phospho)proteome of Vascular Smooth Muscle Cells Derived From Patients With Abdominal Aortic Aneurysm Reveals Novel Disease Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:2226-2243. [PMID: 39206541 DOI: 10.1161/atvbaha.124.321087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by weakening and dilatation of the aortic wall in the abdomen. The aim of this study was to gain insight into cell-specific mechanisms involved in AAA pathophysiology by analyzing the (phospho)proteome of vascular smooth muscle cells derived from patients with AAA compared with those of healthy donors. METHODS A (phospho)proteomics analysis based on tandem mass spectrometry was performed on vascular smooth muscle cells derived from patients with AAA (n=24) and healthy, control individuals (C-SMC, n=8). Following protein identification and quantification using MaxQuant, integrative inferred kinase activity analysis was used to calculate kinase activity scores. RESULTS Expression differences between vascular smooth muscle cells derived from patients with AAA and healthy, control individuals were predominantly found in proteins involved in ECM (extracellular matrix) remodeling (THSD4 [thrombospondin type-1 domain-containing protein 4] and ADAMTS1 [A disintegrin and metalloproteinase with thrombospondin motifs 1]), energy metabolism (GYS1 [glycogen synthase 1] and PCK2 [phosphoenolpyruvate carboxykinase 2, mitochondrial]), and contractility (CACNA2D1 [calcium voltage-dependent channel subunit α-2/δ-1] and TPM1 [tropomyosin α-1 chain]). Phosphorylation patterns on proteins related to actin cytoskeleton organization dominated the phosphoproteome of vascular smooth muscle cells derived from patients with AAA . Besides, phosphorylation changes on proteins related to energy metabolism (GYS1), contractility (PARVA [α-parvin], PPP1R12A [protein phosphatase 1 regulatory subunit 12A], and CALD1 [caldesmon 1]), and intracellular communication (GJA1 [gap junction α-1 protein]) were seen. Kinase activity of NUAK1 (NUAK family SNF1-like kinase 1), FYN (tyrosine-protein kinase Fyn), MAPK7 (mitogen-activated protein kinase 7), and STK10 (serine/threonine kinase 10) was different in vascular smooth muscle cells derived from patients with AAA compared with those from healthy, control individuals. CONCLUSIONS This study revealed changes in expression and phosphorylation levels of proteins involved in various processes responsible for AAA progression and development (eg, energy metabolism, ECM remodeling, actin cytoskeleton organization, contractility, intracellular communication, and cell adhesion). These newly identified proteins, phosphosites, and related kinases provide further insight into the underlying mechanism of vascular smooth muscle cell dysfunction within the aneurysmal wall. Our omics data thereby offer the opportunity to study the relevance, either as drug target or biomarker, of these proteins in AAA development.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteomics/methods
- Male
- Aged
- Cells, Cultured
- Phosphorylation
- Case-Control Studies
- Proteome
- Female
- Vascular Remodeling
- Middle Aged
- Phosphoproteins/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Energy Metabolism
- Tandem Mass Spectrometry
- Signal Transduction
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Alex A Henneman
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Jaco C Knol
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Thang V Pham
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| |
Collapse
|
2
|
Daskalopoulou A, Giotaki SG, Toli K, Minia A, Pliaka V, Alexopoulos LG, Deftereos G, Iliodromitis K, Dimitroulis D, Siasos G, Verikokos C, Iliopoulos D. Targeted Proteomic Analysis of Patients with Ascending Thoracic Aortic Aneurysm. Biomedicines 2023; 11:biomedicines11051273. [PMID: 37238945 DOI: 10.3390/biomedicines11051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND There is a need for clinical markers to aid in the detection of individuals at risk of harboring an ascending thoracic aneurysm (ATAA) or developing one in the future. OBJECTIVES To our knowledge, ATAA remains without a specific biomarker. This study aims to identify potential biomarkers for ATAA using targeted proteomic analysis. METHODS In this study, 52 patients were divided into three groups depending on their ascending aorta diameter: 4.0-4.5 cm (N = 23), 4.6-5.0 cm (N = 20), and >5.0 cm (N = 9). A total of 30 controls were in-house populations ethnically matched to cases without known or visible ATAA-related symptoms and with no ATAA familial history. Before the debut of our study, all patients provided medical history and underwent physical examination. Diagnosis was confirmed by echocardiography and angio-computed tomography (CT) scans. Targeted-proteomic analysis was conducted to identify possible biomarkers for the diagnosis of ATAA. RESULTS A Kruskal-Wallis test revealed that C-C motif chemokine ligand 5 (CCL5), defensin beta 1 (HBD1), intracellular adhesion molecule-1 (ICAM1), interleukin-8 (IL8), tumor necrosis factor alpha (TNFα) and transforming growth factor-beta 1 (TGFB1) expressions are significantly increased in ATAA patients in comparison to control subjects with physiological aorta diameter (p < 0.0001). The receiver-operating characteristic analysis showed that the area under the curve values for CCL5 (0.84), HBD1 (0.83) and ICAM1 (0.83) were superior to that of the other analyzed proteins. CONCLUSIONS CCL5, HBD1 and ICAM1 are very promising biomarkers with satisfying sensitivity and specificity that could be helpful in stratifying risk for the development of ATAA. These biomarkers may assist in the diagnosis and follow-up of patients at risk of developing ATAA. This retrospective study is very encouraging; however, further in-depth studies may be worthwhile to investigate the role of these biomarkers in the pathogenesis of ATAA.
Collapse
Affiliation(s)
- Aphrodite Daskalopoulou
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Athens Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Sotiria G Giotaki
- Second Department of Cardiology, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantina Toli
- Cardiology Department, General Hospital of Chalkida, 341 00 Chalkida, Greece
| | - Angeliki Minia
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
| | - Vaia Pliaka
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
| | - Leonidas G Alexopoulos
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
- Department of Mechanical Engineering, National Technical University of Athens, 106 82 Athens, Greece
| | - Gerasimos Deftereos
- Department of Cardiology, G. Gennimatas, General Hospital of Athens, 115 27 Athens, Greece
| | | | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Christos Verikokos
- Second Department of Propedeutic Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Iliopoulos
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Athens Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
3
|
Wu J, Wang W, Chen Z, Xu F, Zheng Y. Proteomics applications in biomarker discovery and pathogenesis for abdominal aortic aneurysm. Expert Rev Proteomics 2021; 18:305-314. [PMID: 33840337 DOI: 10.1080/14789450.2021.1916473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Abdominal aortic aneurysm (AAA) is a common, complex, and life-threatening disease. Currently, the pathogenesis of AAA is not well understood. No biomarkers or specific drugs are available for AAA in clinical applications. Proteomics is a powerful tool in biomarker discovery, exploration of pathogenesis, and drug target identification.Areas covered: We review the application of mass spectrometry-based proteome analysis in AAA patients within the last ten years. Differentially expressed proteins associated with AAA were identified in multiple sample sources, including vascular tissue, intraluminal thrombus, tissue secretome, blood, and cells. Some potential disease biomarkers, pathogenic mechanisms, or therapeutic targets for AAA were discovered using proteome analysis. The challenges and prospects of proteomics applied to AAA are also discussed.Expert opinion: Since most of the previous proteomic studies used relatively small sample sizes, some promising biomarkers need to be validated in multicenter cohorts to accelerate their clinical application. With the rapid development of mass spectrometry technology, modification-specific proteomics and multi-omics research in the future will enhance our understanding of the pathogenesis of AAA and promote biomarker discovery and drug development for clinical translation.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoran Chen
- Department of Geriatrics, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Xu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Kirlikaya B, Langridge B, Davies A, Onida S. Metabolomics as a tool to improve decision making for the vascular surgeon – wishful thinking or a dream come true? Vascul Pharmacol 2019; 116:1-3. [DOI: 10.1016/j.vph.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
|
5
|
Forte A, Yin X, Fava M, Bancone C, Cipollaro M, De Feo M, Mayr M, Jahangiri M, Della Corte A. Locally different proteome in aortas from patients with stenotic tricuspid and bicuspid aortic valves†. Eur J Cardiothorac Surg 2019; 56:458-469. [DOI: 10.1093/ejcts/ezz032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
OBJECTIVES
We aimed to compare the intracellular proteome of ascending aortas from patients with stenotic bicuspid (BAV) and tricuspid aortic valves (TAV) to identify BAV-specific pathogenetic mechanisms of aortopathy and to verify the previously reported asymmetric expression of BAV aortopathy [concentrated at the convexity (CVX)] in its ‘ascending phenotype’ form.
METHODS
Samples were collected from the CVX and concavity sides of non-aneurysmal ascending aortas in 26 TAV and 26 BAV patients undergoing stenotic aortic valve replacement. Aortic lysates were subjected to cellular protein enrichment by subfractionation, and to proteome comparison by 2-dimensional fluorescence difference in-gel electrophoresis. Differentially regulated protein spots were identified by liquid chromatography–tandem mass spectrometry and analysed in silico. Selected results were verified by immunofluorescence and reverse transcription-polymerase chain reaction.
RESULTS
In BAV samples, 52 protein spots were differentially regulated versus TAV samples at the CVX and 10 spots at the concavity: liquid chromatography–tandem mass spectrometry identified 35 and 10 differentially regulated proteins, respectively. Charge trains of individual proteins (e.g. annexins) suggested the presence of post-translational modifications possibly modulating their activity. At the CVX, 37 of the 52 different protein spots showed decreased expression in BAV versus TAV. The affected biological pathways included those involved in smooth muscle cell contractile phenotype, metabolism and cell stress.
CONCLUSIONS
The observed differential proteomics profiles may have a significant impact on the pathogenesis of the aortopathy, pointing the way for further studies. At a preaneurysmal stage, an aorta with BAV shows more protein expression changes and potentially more post-translational modifications at the CVX of the ascending aorta than at the concavity, compared to that of TAV.
Collapse
Affiliation(s)
- Amalia Forte
- Department of Translational Medical Sciences, Università della Campania “L. Vanvitelli”, Naples, Italy
| | - Xiaoke Yin
- Cardiovascular Division, King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Marika Fava
- Cardiovascular Division, King’s British Heart Foundation Centre, King’s College London, London, UK
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Mount Sinai Hospital, New York, NY, USA
| | - Ciro Bancone
- Department of Translational Medical Sciences, Università della Campania “L. Vanvitelli”, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Università della Campania “L. Vanvitelli”, Naples, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, Università della Campania “L. Vanvitelli”, Naples, Italy
| | - Manuel Mayr
- Cardiovascular Division, King’s British Heart Foundation Centre, King’s College London, London, UK
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Mount Sinai Hospital, New York, NY, USA
| | - Marjan Jahangiri
- Department of Cardiothoracic Surgery, St George’s University of London, NHS Trust, London, UK
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Università della Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
|
7
|
Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 2017; 7:7629. [PMID: 28794502 PMCID: PMC5550488 DOI: 10.1038/s41598-017-07883-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion reduces myocardial ischemia/reperfusion injury. In left ventricular (LV) biopsies from patients undergoing coronary artery bypass grafting (CABG), only the activation of signal transducer and activator of transcription 5 was associated with RIPC’s cardioprotection. We have now used an unbiased, non-hypothesis-driven proteomics and phosphoproteomics approach to analyze LV biopsies from patients undergoing CABG and from pigs undergoing coronary occlusion/reperfusion without (sham) and with RIPC. False discovery rate-based statistics identified a higher prostaglandin reductase 2 expression at early reperfusion with RIPC than with sham in patients. In pigs, the phosphorylation of 116 proteins was different between baseline and early reperfusion with RIPC and/or with sham. The identified proteins were not identical for patients and pigs, but in-silico pathway analysis of proteins with ≥2-fold higher expression/phosphorylation at early reperfusion with RIPC in comparison to sham revealed a relation to mitochondria and cytoskeleton in both species. Apart from limitations of the proteomics analysis per se, the small cohorts, the sampling/sample processing and the number of uncharacterized/unverifiable porcine proteins may have contributed to this largely unsatisfactory result.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Lindsey ML, Hall ME, Harmancey R, Ma Y. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics 2016; 13:19. [PMID: 27651752 PMCID: PMC5024439 DOI: 10.1186/s12014-016-9120-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of cardiac wound healing responses that involve stimulation of robust inflammation to clear necrotic myocytes and tissue debris and induction of extracellular matrix (ECM) protein synthesis to generate a scar. Proteomic strategies provide us with a means to index the ECM proteins expressed in the LV, quantify amounts, determine functions, and explore interactions. This review will focus on the efforts taken in the proteomics research field that have expanded our understanding of post-MI LV remodeling, concentrating on the strengths and limitations of different proteomic approaches to glean information that is specific to ECM turnover in the post-MI setting. We will discuss how recent advances in sample preparation and labeling protocols increase our successes at detecting components of the cardiac ECM proteome. We will summarize how proteomic approaches, focusing on the ECM compartment, have progressed over time to current gel-free methods using decellularized fractions or labeling strategies that will be useful for clinical applications. This review will provide an overview of how cardiac ECM proteomics has evolved over the last decade and will provide insight into future directions that will drive forward our understanding of cardiac ECM turnover in the post-MI LV.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA ; Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS USA ; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS USA
| | - Michael E Hall
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA ; Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS USA
| | - Romain Harmancey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| | - Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| |
Collapse
|
9
|
Abstract
Advances in mass spectrometry technology and bioinformatics using clinical human samples have expanded quantitative proteomics in cardiovascular research. There are two major proteomic strategies: namely, "gel-based" or "gel-free" proteomics coupled with either "top-down" or "bottom-up" mass spectrometry. Both are introduced into the proteomic analysis using plasma or serum sample targeting 'biomarker" searches of aortic aneurysm and tissue samples, such as from the aneurysmal wall, calcific aortic valve, or myocardial tissue, investigating pathophysiological protein interactions and post-translational modifications. We summarize the proteomic studies that analyzed human samples taken during cardiovascular surgery to investigate disease processes, in order to better understand the system-wide changes behind known molecular factors and specific signaling pathways.
Collapse
Affiliation(s)
- Teiji Oda
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|