1
|
Shi M, Zhang L, Bi F, Zhou Z. ALKBH5 Inhibits YTHDF2-m6A-Mediated Degradation of RCN1 mRNA to Promote Keloid Formation by Activating IRE1α-XBP1-Mediated ER Stress. J Cosmet Dermatol 2025; 24:e70177. [PMID: 40214031 PMCID: PMC11987481 DOI: 10.1111/jocd.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/11/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Reticulocalbin 1 (RCN1) was reported to be upregulated in keloid, but its molecular mechanism remains unclear. The aim of this study is to investigate the role of RCN1 in keloid. METHODS The expression of RCN1 was detected in keloid tissues. Keloid fibroblasts were transfected with RCN1 overexpression vector. Cell viability, collagen production, apoptosis, and cell invasion were measured. Then, the m6A modification level of RCN1 mRNA was detected by methylated RNA immunoprecipitation (MeRIP), and the effect of overexpression of ALKB homolog5 (ALKBH5) on the m6A modification level of RCN1 mRNA was evaluated. Subsequently, the relationship between RCN1 and XBP1 was verified by co-immunoprecipitation (Co-IP) assay. pcDNA-RCN1 and XBP1 shRNA were transfected into keloid fibroblasts to for reversal experiments, and changes in the endoplasmic reticulum (ER) structure of keloid fibroblasts were observed by transmission electron microscopy (TEM). Finally, we established a mouse keloid model and injected mice with the RCN1 shRNA lentiviral vectors to monitor the keloid formation in mice. RESULTS RCN1 was highly expressed in keloid tissues and keloid fibroblasts. Overexpression of RCN1 significantly increased keloid fibroblast viability, collagen production, and invasion, but inhibited cell apoptosis. ALKBH5 upregulated RCN1 expression by reducing m6A-YTHDF2-mediated degradation of RCN1 mRNA, and RCN1 knockdown reversed the promoting effect of ALKBH5 overexpression on cell viability collagen production and invasion, and the inhibitory effect of ALKBH5 overexpression on apoptosis in keloid fibroblasts. Moreover, overexpression of RCN1 significantly upregulated the protein levels of XBP1, GRP78, and IRE1α, and promoted ER stress in keloid fibroblasts, but this change was eliminated by sh-XBP1 intervention. In vivo experiments showed that knockdown of RCN1 significantly inhibited keloid formation by alleviating cell apoptosis and ER stress in mice. CONCLUSION Our data revealed that RCN1 was upregulated by ALKBH5 to promote keloid formation by activating IRE1α-XBP1-mediated ER stress, RCN1 may be a potential biomarker for treatment of keloid.
Collapse
Affiliation(s)
- Min Shi
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Lu Zhang
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Fangfang Bi
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Zhuo Zhou
- Department of Obstetrics and GynecologyNorthwest University First HospitalXi'anShaanxiChina
| |
Collapse
|
2
|
Jin J, Wang K, Lu C, Yao C, Xie F. NEDD4L Inhibits the Proliferation and Migration of Keloid Fibroblasts by Regulating YY1 Ubiquitination-Mediated Glycolytic Metabolic Reprogramming. Exp Dermatol 2024; 33:e70008. [PMID: 39494931 DOI: 10.1111/exd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Keloid scarring is a complex fibroproliferative disorder characterised by excessive fibroblast proliferation. Inhibition of cellular glycolysis effectively suppresses the proliferation of keloid fibroblasts (KFs). Neural precursor cell-expressed developmentally downregulated gene 4-like (NEDD4L), a ubiquitin ligase, regulates cell proliferation in different diseases. This study investigated the effects of NEDD4L on glucose metabolism, proliferation and migration in KFs. Primary KFs were isolated from keloid skin tissues obtained from patients with active-stage keloids. Cell transfection was used to upregulate or downregulate NEDD4L and Yin Yang 1 (YY1) in KFs. Protein expression was assessed by immunohistochemistry and western blotting. The viability, proliferative capacity and migration ability of KFs were evaluated using the MTT method and the EdU and wound healing assays, respectively. The regulatory effect of NEDD4L on YY1 ubiquitination was examined by coimmunoprecipitation. The interaction between YY1 and hexokinase 2 (HK2) was confirmed by a dual-luciferase reporter assay. NEDD4L was downregulated, whereas YY1 and HK2 were highly expressed in keloid tissues compared with normal skin. Overexpression of NEDD4L inhibited the proliferation and migration of KFs. NEDD4L promoted YY1 degradation in KFs by inducing its ubiquitination. Upregulation of YY1 induced glucose consumption and lactate production in KFs via the transcriptional regulation of HK2. Increased expression of YY1 reversed the reduced viability, proliferation, and migration of KFs overexpressing NEDD4L. YY1 also reversed the NEDD4L-induced inhibition of glucose consumption and lactate production in KFs. Additionally, an in vivo study confirmed the inhibitory roles of NEDD4L overexpression and YY1 knockdown in keloid formation. NEDD4L suppressed the viability, proliferation and migration of KFs by regulating YY1 ubiquitination-mediated glycolysis through HK2. These findings suggest a novel regulatory axis, NEDD4L/YY1/HK2, that mediates glucose metabolism in keloid formation.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Kai Wang
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenxi Lu
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenghao Yao
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Feng Xie
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
3
|
Zhang E, Yan Q, Sun Y, Li J, Chen L, Zou J, Zeng S, Jiang J, Li J. Integrative Analysis of Lactylome and Proteome of Hypertrophic Scar To Identify Pathways or Proteins Associated with Disease Development. J Proteome Res 2024; 23:3367-3382. [PMID: 39012622 DOI: 10.1021/acs.jproteome.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lactylation (Kla), a recently discovered post-translational modification derived from lactate, plays crucial roles in various cellular processes. However, the specific influence of lactylation on the biological processes underlying hypertrophic scar formation remains unclear. In this study, we present a comprehensive profiling of the lactylome and proteome in both hypertrophic scars and adjacent normal skin tissues. A total of 1023 Kla sites originating from 338 nonhistone proteins were identified based on lactylome analysis. Proteome analysis in hypertrophic scar and adjacent skin samples revealed the identification of 2008 proteins. It is worth noting that Kla exhibits a preference for genes associated with ribosome function as well as glycolysis/gluconeogenesis in both normal skin and hypertrophic scar tissues. Furthermore, the functional enrichment analysis demonstrated that differentially lactyled proteins are primarily involved in proteoglycans, HIF-1, and AMPK signaling pathways. The combined analysis of the lactylome and proteome data highlighted a significant upregulation of 14 lactylation sites in hypertrophic scar tissues. Overall, our investigation unveiled the significant involvement of protein lactylation in the regulation of ribosome function as well as glycolysis/gluconeogenesis, potentially contributing to the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Enyuan Zhang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qiyue Yan
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Yue Sun
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Siqi Zeng
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingbin Jiang
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jun Li
- Department of Plastic and Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| |
Collapse
|
4
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Zhao SY, Wu D, Cheng C, Xie JH. Advances and future directions in keloid research: Pathogenesis, diagnosis and personalized treatment strategies. World J Clin Cases 2023; 11:8094-8098. [PMID: 38130783 PMCID: PMC10731170 DOI: 10.12998/wjcc.v11.i34.8094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Keloids, which are abnormal manifestations of wound healing, can result in significant functional impairment and aesthetic deformities. The pathogenesis of keloids is multifaceted and complex and influenced by various factors, such as genetics, the environment, and immune responses. The evolution of keloid treatment has progressed from traditional surgical excision to a contemporary combination of therapies including injection and radiation treatments, among others. This article provides a comprehensive review of keloid pathogenesis and treatment, emphasizing the latest advances in the field. Ultimately, this review underscores the necessity for continued research to enhance our understanding of keloid pathogenesis and to devise more effective treatments for this challenging condition.
Collapse
Affiliation(s)
- Song-Yun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Dan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200000, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Jia-Heng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
6
|
Ding F, Yang L, Wang Y, Wang J, Ma Y, Jin J. Serum Rcn3 level is a potential diagnostic biomarker for connective tissue disease-associated interstitial lung disease and reflects the severity of pulmonary function. BMC Pulm Med 2023; 23:68. [PMID: 36800954 PMCID: PMC9938976 DOI: 10.1186/s12890-023-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Although reticulocalbin 3 (Rcn3) has a critical role in alveolar epithelial function as well as in pathogenesis of pulmonary fibrosis, no study has yet examined its diagnostic and prognostic values for interstitial lung disease (ILD). This study aimed to evaluate Rcn3 as a potential marker in differential diagnosis of idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD) and in reflecting the severity of disease. METHODS This was a retrospective observational pilot study included 71 ILD patients and 39 healthy controls. These patients were stratified into IPF group (39) and CTD-ILD group (32). The severity of ILD was evaluated through pulmonary function test. RESULTS Serum Rcn3 level was statistically higher in CTD-ILD patients than that in IPF patients (p = 0.017) and healthy controls (p = 0.010). Serum Rcn3 further showed statistically negative correlation with pulmonary function indexes (TLC% pred and DLCO% pred) and positive correlation with inflammatory indexes (CRP and ESR) (r = - 0.367, p = 0.039; r = - 0.370, p = 0.037; r = 0.355, p = 0.046; r = 0.392, p = 0.026, respectively) in CTD-ILD patients rather than IPF patients. ROC analysis demonstrated that serum Rcn3 had superior diagnostic value for CTD-ILD and a cutoff value of 2.73 ng/mL had a sensitivity of 69%, a specificity of 69% and an accuracy of 45% for diagnose of CTD-ILD. CONCLUSIONS Serum Rcn3 levels might be a clinically useful biomarker in screening and evaluating CTD-ILD.
Collapse
Affiliation(s)
- Fangping Ding
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, 100043 China
| | - Liu Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, 100069 China
| | - Yingfei Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, 100069 China
| | - Jing Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, 100043 China ,grid.24696.3f0000 0004 0369 153XBeijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020 China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, 100069, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, 100043, China. .,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China. .,Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
7
|
Hu W, Hu Y, Pei Y, Li R, Xu F, Chi X, Mi J, Bergquist J, Lu L, Zhang L, Yang C. Silencing DTX3L Inhibits the Progression of Cervical Carcinoma by Regulating PI3K/AKT/mTOR Signaling Pathway. Int J Mol Sci 2023; 24:ijms24010861. [PMID: 36614304 PMCID: PMC9821498 DOI: 10.3390/ijms24010861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Cervical carcinoma (CC) is the second most prevalent gynecologic cancer in females across the world. To obtain a better understanding of the mechanisms underlying the development of CC, high-resolution label-free mass spectrometry was performed on CC and adjacent normal tissues from eight patients. A total of 2631 proteins were identified, and 46 significant differently expressed proteins (DEPs) were found between CC and normal tissues (p < 0.01, fold change >10 or <0.1). Ingenuity pathway analysis revealed that the majority of the proteins were involved in the regulation of eIF4 and p70S6K signaling and mTOR signaling. Among 46 DEPs, Integrinβ6 (ITGB6), PPP1CB, TMPO, PTGES3 (P23) and DTX3L were significantly upregulated, while Desmin (DES) was significantly downregulated in CC tissues compared with the adjacent normal tissues. In in vivo and in vitro experiments, DTX3L knockdown suppressed CC cell proliferation, migration, invasion and xenograft tumorigenesis, and enhanced cell apoptosis. Combination of silencing DTX3L and cisplatin treatment induced higher apoptosis percentage compared to cisplatin treatment alone. Moreover, DTX3L silencing inhibited the PI3K/AKT/mTOR signal pathway. Thus, our results suggested DTX3L could regulate CC progression through the PI3K/AKT/mTOR signal pathway and is potentially a novel biomarker and therapeutic target for CC.
Collapse
Affiliation(s)
- Wei Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
| | - Yaorui Hu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
- School of Basic Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yao Pei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
| | - Rongrong Li
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
- School of Basic Medicine, Binzhou Medical University, Yantai 264000, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
- Department of Chemistry—BMC, Analytical Chemistry and Neurochemistry, Uppsala University, 75124 Uppsala, Sweden
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Luping Zhang
- School of Basic Medicine, Binzhou Medical University, Yantai 264000, China
- Correspondence: (L.Z.); (C.Y.)
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai 264000, China
- Correspondence: (L.Z.); (C.Y.)
| |
Collapse
|
8
|
Xu H, Wang Z, Yang H, Zhu J, Hu Z. Bioinformatics analysis and identification of dysregulated
POSTN
in the pathogenesis of keloid. Int Wound J 2022; 20:1700-1711. [PMID: 36517972 PMCID: PMC10088861 DOI: 10.1111/iwj.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Keloid is a benign fibro-proliferative dermal tumour formed by an abnormal scarring response to injury and characterised by excessive collagen accumulation and invasive growth. The pathophysiology of keloids is complex, and the treatment for keloids is still an unmet medical need. Here, we investigated the transcriptional gene that influences keloid development by comparing keloid, non-lesioned keloid skin and normal skin as well as keloid fibroblast and normal fibroblast (GSE83286, GSE92566, GSE44270). Based on the analysis, 146 up-regulated genes and 48 down-regulated genes were found in keloid tissue compared with normal skin and keloid no-lesioned skin. Eleven genes were further identified by overlapping the DEGs from keloid tissue described previously with DEGs in keloid fibroblast. The overlapped genes included PRR16, SFRP2, EDIL3, GERM1, POSTN, PDE3A, GALNT5, F2RL2, EYA4, ZFHX4, and AIM2. POSTN is the most crucial node in PPI network, which mainly correlate to collagen-related genes. Moreover, siRNA knockdown identified POSTN is a crucial regulatory gene that regulates keloid fibroblast migration and collagen I, collagen III expression level. In conclusion, our study identified 11 hub genes that play crucial role in keloid formation and provided insights for POSTN to be the therapeutic target for keloid through bioinformatic analysis of three datasets. Additionally, our results would support the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Hailin Xu
- First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Hao Yang
- First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|