1
|
Rizzo M, Baggs E, Chowdhury AS, Nagarajan R, Warner LR. Backbone 1H, 13C and 15N assignments of the apo-acyl carrier protein (ACP 1) of Pseudomonas aeruginosa. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:183-188. [PMID: 37421542 PMCID: PMC10772199 DOI: 10.1007/s12104-023-10138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023]
Abstract
The N-acyl-L-homoserine lactone (AHL) quorum sensing regulates virulence in the opportunistic pathogen, Pseudomonas aeruginosa. The LasI and RhlI AHL synthases use acyl carrier protein substrates to synthesize, respectively, the 3-oxododecanoyl-L-homoserine lactone (3-oxoC12-HSL) and butyryl-L-homoserine lactone (C4-HSL) QS signals for this bacterium. Although P. aeruginosa genome contains three open reading frames to encode three acyl carrier proteins, namely the ACP1, ACP2 and ACP3, microarray and gene replacement studies show that only the ACP1 carrier protein is under quorum sensing regulation. In this study, we isotopically enriched one of the acyl carrier proteins, ACP1 from P. aeruginosa and describe the backbone resonance assignments for this protein to delineate the structural and molecular basis of ACP1 recognition in P. aeruginosa AHL quorum sensing signal synthesis.
Collapse
Affiliation(s)
| | - Eric Baggs
- Boise State University, Boise, United States
| | | | | | | |
Collapse
|
2
|
Ge H, Xu J, Hua M, An W, Wu J, Wang B, Li P, Fang H. Genome-wide identification and analysis of ACP gene family in Sorghum bicolor (L.) Moench. BMC Genomics 2022; 23:538. [PMID: 35879672 PMCID: PMC9310384 DOI: 10.1186/s12864-022-08776-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acyl carrier proteins (ACP) constitute a very conserved carrier protein family. Previous studies have found that ACP not only takes part in the fatty acid synthesis process of almost all organisms, but also participates in the regulation of plant growth, development, and metabolism, and makes plants adaptable to stresses. However, this gene family has not been systematically studied in sorghum. RESULTS Nine ACP family members were identified in the sorghum genome, which were located on chromosomes 1, 2, 5, 7, 8 and 9, respectively. Evolutionary analysis among different species divided the ACP family into four subfamilies, showing that the SbACPs were more closely related to maize. The prediction results of subcellular localization showed that SbACPs were mainly distributed in chloroplasts and mitochondria, while fluorescence localization showed that SbACPs were mainly localized in chloroplasts in tobacco leaf. The analysis of gene structure revealed a relatively simple genetic structure, that there were 1-3 introns in the sorghum ACP family, and the gene structure within the same subfamily had high similarity. The amplification method of SbACPs was mainly large fragment replication, and SbACPs were more closely related to ACPs in maize and rice. In addition, three-dimensional structure analysis showed that all ACP genes in sorghum contained four α helices, and the second helix structure was more conserved, implying a key role in function. Cis-acting element analysis indicated that the SbACPs might be involved in light response, plant growth and development regulation, biotic and abiotic stress response, plant hormone regulation, and other physiological processes. What's more, qRT-PCR analysis uncovered that some of SbACPs might be involved in the adaptive regulation of drought and salt stresses, indicating the close relationship between fatty acids and the resistance to abiotic stresses in sorghum. CONCLUSIONS In summary, these results showed a comprehensive overview of the SbACPs and provided a theoretical basis for further studies on the biological functions of SbACPs in sorghum growth, development and abiotic stress responses.
Collapse
Affiliation(s)
- Hanqiu Ge
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Mingzhu Hua
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Wenwen An
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, 226368, Jiangsu, People's Republic of China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Xiang B, Hao X, Xie Q, Shen G, Liu Y, Zhu X. Deletion of a Rare Fungal PKS CgPKS11 Promotes Chaetoglobosin A Biosynthesis, Yet Defers the Growth and Development of Chaetomium globosum. J Fungi (Basel) 2021; 7:jof7090750. [PMID: 34575788 PMCID: PMC8471558 DOI: 10.3390/jof7090750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that chaetoglobosin A (ChA) exhibits a great potential in the biocontrol of nematodes and pathogenic fungi. To improve the production of ChA, a CRISPR-Cas9 system was created and applied for eliminating potential competitive polyketide products. One of the polyketide synthase encoding genes, Cgpks11, which is putatively involved in the biosynthesis of chaetoglocin A, was disrupted. Cgpks11 deletion led to the overexpression of the CgcheA gene cluster, which is responsible for ChA biosynthesis, and a 1.6-fold increase of ChA. Transcription of pks-1, a melanin PKS, was simultaneously upregulated. Conversely, the transcription of genes for chaetoglocin A biosynthesis, e.g., CHGG_10646 and CHGG_10649, were significantly downregulated. The deletion also led to growth retardation and seriously impaired ascospore development. This study found a novel regulatory means on the biosynthesis of ChA by CgPKS11. CgPKS11 affects chaetoglobosin A biosynthesis, growth, and development in Chaetomium globosum.
Collapse
Affiliation(s)
- Biyun Xiang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Xiaoran Hao
- National Experimental Teaching Demonstrating Center, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: (X.H.); (X.Z.)
| | - Qiaohong Xie
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
- Xiamen No.1 High School of Fujian, Xiamen 361000, China
| | - Guangya Shen
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
- Correspondence: (X.H.); (X.Z.)
| |
Collapse
|
5
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
6
|
Matilla MA, Leeper FJ, Salmond GPC. Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 2015; 17:2993-3008. [PMID: 25753587 PMCID: PMC4552970 DOI: 10.1111/1462-2920.12839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 02/02/2023]
Abstract
Polyketides represent an important class of bioactive natural products with a broad range of biological activities. We identified recently a large trans-acyltransferase (AT) polyketide synthase gene cluster responsible for the biosynthesis of the antifungal, anti-oomycete and antitumor haterumalide, oocydin A (ooc). Using genome sequencing and comparative genomics, we show that the ooc gene cluster is widespread within biocontrol and phytopathogenic strains of the enterobacteria, Serratia and Dickeya. The analysis of in frame deletion mutants confirmed the role of a hydroxymethylglutaryl-coenzyme A synthase cassette, three flavin-dependent tailoring enzymes, a free-standing acyl carrier protein and two hypothetical proteins in oocydin A biosynthesis. The requirement of the three trans-acting AT domains for the biosynthesis of the macrolide was also demonstrated. Expression of the ooc gene cluster was shown to be positively regulated by an N-acyl-L-homoserine lactone-based quorum sensing system, but operating in a strain-dependent manner. At a post-transcriptional level, the RNA chaperone, Hfq, plays a key role in oocydin A biosynthesis. The Hfq-dependent regulation is partially mediated by the stationary phase sigma factor, RpoS, which was also shown to positively regulate the synthesis of the macrolide. Our results reveal differential regulation of the divergently transcribed ooc transcriptional units, highlighting the complexity of oocydin A production.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Finian J Leeper
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW, UK
| | - George P C Salmond
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK,*For correspondence. E-mail ; Tel. +44 (0)1223 333650; Fax +44 (0)1223 766108
| |
Collapse
|
7
|
Beld J, Blatti JL, Behnke C, Mendez M, Burkart MD. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions. JOURNAL OF APPLIED PHYCOLOGY 2014; 26:1619-1629. [PMID: 25110394 PMCID: PMC4125210 DOI: 10.1007/s10811-013-0203-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.
Collapse
|
8
|
Zimmer MH, Li B, Shahid RS, Peshkepija P, Zimmer M. Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins. Chem Phys 2014; 429:5-11. [PMID: 24465077 PMCID: PMC3899699 DOI: 10.1016/j.chemphys.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets.(1) Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.
Collapse
Affiliation(s)
- Matthew H. Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Binsen Li
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Ramza S. Shahid
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Paola Peshkepija
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Marc Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
| |
Collapse
|
9
|
Xu W, Qiao K, Tang Y. Structural analysis of protein-protein interactions in type I polyketide synthases. Crit Rev Biochem Mol Biol 2012; 48:98-122. [PMID: 23249187 DOI: 10.3109/10409238.2012.745476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
10
|
Structural classification of biotin carboxyl carrier proteins. Biotechnol Lett 2012; 34:1869-75. [PMID: 22714277 DOI: 10.1007/s10529-012-0978-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
We gathered primary and tertiary structures of acyl-CoA carboxylases from public databases, and established that members of their biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains occur in one family each and that members of their carboxyl transferase (CT) domains occur in two families. Protein families have members similar in primary and tertiary structure that probably have descended from the same protein ancestor. The BCCP domains complexed with biotin in acyl and acyl-CoA carboxylases transfer bicarbonate ions from BC domains to CT domains, enabling the latter to carboxylate acyl and acyl-CoA moieties. We separated the BCCP domains into four subfamilies based on more subtle primary structure differences. Members of different BCCP subfamilies often are produced by different types of organisms and are associated with different carboxylases.
Collapse
|