1
|
Zhao X, Shahul Hameed UF, Kharchenko V, Liao C, Huser F, Remington JM, Radhakrishnan AK, Jaremko M, Jaremko Ł, Arold ST, Li J. Molecular basis for the adaptive evolution of environment-sensing by H-NS proteins. eLife 2021; 10:57467. [PMID: 33410747 PMCID: PMC7817174 DOI: 10.7554/elife.57467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.
Collapse
Affiliation(s)
- Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, United States
| | - Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Vladlena Kharchenko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, United States
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jacob M Remington
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, United States
| |
Collapse
|
2
|
Mohammadyani D, Yanamala N, Samhan-Arias AK, Kapralov AA, Stepanov G, Nuar N, Planas-Iglesias J, Sanghera N, Kagan VE, Klein-Seetharaman J. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1057-1068. [PMID: 29317202 DOI: 10.1007/s00775-019-01649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
Abstract
The interaction between cardiolipin (CL) and cytochrome c (cyt-c) results in a gain of function of peroxidase activity by cyt-c. Despite intensive research, disagreements on nature and molecular details of this interaction remain. In particular, it is still not known how the interaction triggers the onset of apoptosis. Enzymatic characterization of peroxidase activity has highlighted the need for a critical threshold concentration of CL, a finding of profound physiological relevance in vivo. Using solution NMR, fluorescence spectroscopy, and in silico modeling approaches we here confirm that full binding of cyt-c to the membrane requires a CL:cyt-c threshold ratio of 5:1. Among three binding sites, the simultaneous binding of two sites, at two opposing sides of the heme, provides a mechanism to open the heme crevice to substrates. This results in "productive binding" in which cyt-c then sequesters CL, inducing curvature in the membrane. Membrane perturbation along with lipid peroxidation, due to interactions of heme/CL acyl chains, initiates the next step in the apoptotic pathway of making the membrane leaky. The third CL binding site while allowing interaction with the membrane, does not cluster CL or induce subsequent events, making this interaction "unproductive".
Collapse
Affiliation(s)
- Dariush Mohammadyani
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15219, USA; Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Naveena Yanamala
- National Institute for Occupational Safety and Health/Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| | - Alejandro K Samhan-Arias
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15219, USA
| | - German Stepanov
- Department of General and Medical Biophysics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Nick Nuar
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Joan Planas-Iglesias
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Narinder Sanghera
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15219, USA
| | - Judith Klein-Seetharaman
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Kumar A, Wißbrock A, Goradia N, Bellstedt P, Ramachandran R, Imhof D, Ohlenschläger O. Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase. Sci Rep 2018; 8:2474. [PMID: 29410458 PMCID: PMC5802807 DOI: 10.1038/s41598-018-20841-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Cystathionine-β-synthase (CBS) belongs to a large family of pyridoxal 5’-phosphate (PLP)-dependent enzymes, responsible for the sulfur metabolism. The heme-dependent protein CBS is part of regulatory pathways also involving the gasotransmitter hydrogen sulfide. Malfunction of CBS can lead to pathologic conditions like cancer, cardiovascular and neurodegenerative disorders. Truncation of residues 1–40, absent in X-ray structures of CBS, reduces but does not abolish the activity of the enzyme. Here we report the NMR resonance assignment and heme interaction studies for the N-terminal peptide stretch of CBS. We present NMR-spectral evidence that residues 1–40 constitute an intrinsically disordered region in CBS and interact with heme via a cysteine-proline based motif.
Collapse
Affiliation(s)
- Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nishit Goradia
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Peter Bellstedt
- Friedrich Schiller University, Faculty of Chemistry and Earth Sciences, Humboldtstr. 10, D-07743, Jena, Germany
| | - Ramadurai Ramachandran
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany.
| |
Collapse
|
4
|
The "Sticky Patch" Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Methods Mol Biol 2017; 1607:77-115. [PMID: 28573570 DOI: 10.1007/978-1-4939-7000-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.
Collapse
|
5
|
Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, Grembecka J, Cierpicki T. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun 2016; 7:13343. [PMID: 27827373 PMCID: PMC5105191 DOI: 10.1038/ncomms13343] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and emerging data support a role of BMI1 in cancer. The central domain of BMI1 is involved in protein-protein interactions and is essential for its oncogenic activity. Here, we present the structure of BMI1 bound to the polyhomeotic protein PHC2 illustrating that the central domain of BMI1 adopts an ubiquitin-like (UBL) fold and binds PHC2 in a β-hairpin conformation. Unexpectedly, we find that the UBL domain is involved in homo-oligomerization of BMI1. We demonstrate that both the interaction of BMI1 with polyhomeotic proteins and homo-oligomerization via UBL domain are necessary for H2A ubiquitination activity of PRC1 and for clonogenic potential of U2OS cells. Here, we also emphasize need for joint application of NMR spectroscopy and X-ray crystallography to determine the overall structure of the BMI1-PHC2 complex.
Collapse
Affiliation(s)
- Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ashley Harris
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bohdan Boytsov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Łukasz Jaremko
- Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Goettingen, Germany
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Mariusz Jaremko
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Elizabeth R. Lawlor
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Felli IC, Pierattelli R. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:1-13. [PMID: 25669738 DOI: 10.1016/j.pnmrs.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Spin-state-selective methods to achieve homonuclear decoupling in the direct acquisition dimension of (13)C detected NMR experiments have been one of the key contributors to converting (13)C detected NMR experiments into really useful tools for studying biomolecules. We discuss here in detail the various methods that have been proposed, summarize the large array of new experiments that have been developed and present applications to different kinds of proteins in different aggregation states.
Collapse
Affiliation(s)
- Isabella C Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Cierpicki T, Grembecka J. Challenges and opportunities in targeting the menin-MLL interaction. Future Med Chem 2014; 6:447-62. [PMID: 24635524 PMCID: PMC4138051 DOI: 10.4155/fmc.13.214] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Menin is an essential co-factor of oncogenic MLL fusion proteins and the menin-MLL interaction is critical for development of acute leukemia in vivo. Targeting the menin-MLL interaction with small molecules represents an attractive strategy to develop new anticancer agents. Recent developments, including determination of menin crystal structure and development of potent small molecule and peptidomimetic inhibitors, demonstrate the feasibility of targeting the menin-MLL interaction. On the other hand, biochemical and structural studies revealed that MLL binds to menin in a complex bivalent mode engaging two MLL motifs, and therefore inhibition of this protein-protein interaction represents a challenge. This review summarizes the most recent achievements in targeting the menin-MLL interaction as well as discusses potential benefits of blocking menin in cancer.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Author for correspondence: Tel.: +1 734 615 9324, Fax: +1 734 615 0688,
| | | |
Collapse
|
8
|
Yuwen T, Skrynnikov NR. CP-HISQC: a better version of HSQC experiment for intrinsically disordered proteins under physiological conditions. JOURNAL OF BIOMOLECULAR NMR 2014; 58:175-92. [PMID: 24496557 DOI: 10.1007/s10858-014-9815-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/24/2014] [Indexed: 05/25/2023]
Abstract
(1)H-(15)N HSQC spectroscopy is a workhorse of protein NMR. However, under physiological conditions the quality of HSQC spectra tends to deteriorate due to fast solvent exchange. For globular proteins only a limited number of surface residues are affected, but in the case of intrinsically disordered proteins (IDPs) HSQC spectra are thoroughly degraded, suffering from both peak broadening and loss of intensity. To alleviate this problem, we make use of the following two concepts. (1) Proton-decoupled HSQC. Regular HSQC and its many variants record the evolution of multi-spin modes, 2NxHz or 2NxHx, in indirect dimension. Under the effect of fast solvent exchange these modes undergo rapid decay, which results in severe line-broadening. In contrast, proton-decoupled HSQC relies on Nx coherence which is essentially insensitive to the effects of solvent exchange. Moreover, for measurements involving IDPs at or near physiological temperature, Nx mode offers excellent relaxation properties, leading to very sharp resonances. (2) Cross-polarization (1)H-to-(15)N transfer. If CP element is designed such as to lock both (1)H(N) and water magnetization, the following transfer is effected: [Formula: see text] Thus water magnetization is successfully exploited to boost the amount of signal. In addition, CP element suffers less loss from solvent exchange, conformational exchange, and dipolar relaxation compared to the more popular INEPT element. Combining these two concepts, we have implemented the experiment termed CP-HISQC (cross-polarization assisted heteronuclear in-phase single-quantum correlation). The pulse sequence has been designed such as to preserve water magnetization and therefore can be executed with reasonably short recycling delays. In the presence of fast solvent exchange, kex ~ 100 s(-1), CP-HISQC offers much better spectral resolution than conventional HSQC-type experiments. At the same time it offers up to twofold gain in sensitivity compared to plain proton-decoupled HSQC. The new sequence has been tested on the sample of drkN SH3 domain at pH 7.5, 30 °C. High-quality spectrum has been recorded in less than 1 h, containing resonances from both folded and unfolded species. High-quality spectra have also been obtained for arginine side-chain H(ε)N(ε) groups in the sample of short peptide Sos. For Arg side chains, we have additionally implemented (HE)NE(CD)HD experiment. Using (13)C-labeled sample of Sos, we have demonstrated that proton-to-nitrogen CP transfer remains highly efficient in the presence of solvent exchange as fast as kex = 620 s(-1). In contrast, INEPT transfer completely fails in this regime.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|