1
|
Qu Z, Liu H, Yang J, Zheng L, Huang J, Wang Z, Xie C, Zuo W, Xia X, Sun L, Zhou Y, Xie Y, Lu J, Zhu Y, Yu L, Liu L, Zhou H, Dai L, Leung ELH. Selective utilization of medicinal polysaccharides by human gut Bacteroides and Parabacteroides species. Nat Commun 2025; 16:638. [PMID: 39809740 PMCID: PMC11733155 DOI: 10.1038/s41467-025-55845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Human gut Bacteroides and Parabacteroides species play crucial roles in human health and are known for their capacity to utilize diverse polysaccharides. Understanding how these bacteria utilize medicinal polysaccharides is foundational for developing polysaccharides-based prebiotics and drugs. Here, we systematically mapped the utilization profiles of 20 different medicinal polysaccharides by 28 human gut Bacteroides and Parabacteroides species. The growth profiles exhibited substantial variation across different bacterial species and medicinal polysaccharides. Ginseng polysaccharides promoted the growth of multiple Bacteroides and Parabacteroides species; in contrast, Dendrobium polysaccharides selectively promoted the growth of Bacteroides uniformis. This distinct utilization profile was associated with genomic variation in carbohydrate-active enzymes, rather than monosaccharides composition variation among medicinal polysaccharides. Through comparative transcriptomics and genetical manipulation, we validated that the polysaccharide utilization locus PUL34_Bu enabled Bacteroides uniformis to utilize Dendrobium polysaccharides (i.e. glucomannan). In addition, we found that the GH26 enzyme in PUL34_Bu allowed Bacteroides uniformis to utilize multiple plant-derived mannan. Overall, our results revealed the selective utilization of medicinal polysaccharide by Bacteroides and Parabacteroides species and provided insights into the use of polysaccharides in engineering the human gut microbiome.
Collapse
Affiliation(s)
- Zepeng Qu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linggang Zheng
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiong Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Sun
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingguang Lu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lili Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lihua Liu
- School of Economics and Management, Yanbian University, Yanji, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China.
- State Key Laboratory of Quality Research in Chinese Medicine, University of, Macau, Macau.
| |
Collapse
|
2
|
Xing M, Wang Y, Zhao Y, Chi Z, Chi Z, Liu G. C-Terminal Bacterial Immunoglobulin-like Domain of κ-Carrageenase Serves as a Multifunctional Module to Promote κ-Carrageenan Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1212-1222. [PMID: 35057622 DOI: 10.1021/acs.jafc.1c07233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
κ-Carrageenase is an important component for κ-carrageenan oligosaccharide production. Generally, noncatalytic domains are appended to carbohydrate-active domains and potentiate catalytic activity. However, studies devoted to κ-carrageenase are relatively few. Here, a C-terminal bacterial immunoglobulin-like domain (Big_2) was identified in κ-carrageenase (PpCgk) from Pseudoalteromonas porphyrae. Biochemical characterization of native PpCgk and its two truncations, PpCgkCD (catalytic domain) and PpBig_2 (Big_2 domain), revealed that the specific activity, catalytic efficiency (kcat/Km(app)), specific κ-carrageenan-binding capacity, and thermostability of PpCgk were significantly higher than those of PpCgkCD, suggesting that the noncatalytic PpBig_2 domain is a multifunctional module and essential for maintaining the activity and thermostability of PpCgk. Furthermore, it was found that the mode of action of PpCgk was more processive on both the dissolved and gelled substrates than that of PpCgkCD, indicating that PpBig_2 contributes to the processivity of PpCgk. Interestingly, PpBig_2 can be used as an independent module to enhance the hydrolysis of κ-carrageenan through its disruptive function. In addition, sequence analysis suggests that Big_2 domains are highly conserved in bacterial κ-carrageenases, implying the universality of their noncatalytic functions. These findings reveal the multifunctional role of the noncatalytic PpBig_2 and will guide future functional analyses and biotechnology applications of Big_2 domains.
Collapse
Affiliation(s)
- Mengdan Xing
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yujuan Zhao
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
3
|
Sanjaya RE, Putri KDA, Kurniati A, Rohman A, Puspaningsih NNT. In silico characterization of the GH5-cellulase family from uncultured microorganisms: physicochemical and structural studies. J Genet Eng Biotechnol 2021; 19:143. [PMID: 34591195 PMCID: PMC8484414 DOI: 10.1186/s43141-021-00236-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hydrolysis of cellulose-based biomass by cellulases produce fermented sugar for making biofuels, such as bioethanol. Cellulases hydrolyze the β-1,4-glycosidic linkage of cellulose and can be obtained from cultured and uncultured microorganisms. Uncultured microorganisms are a source for exploring novel cellulase genes through the metagenomic approach. Metagenomics concerns the extraction, cloning, and analysis of the entire genetic complement of a habitat without cultivating microbes. The glycoside hydrolase 5 family (GH5) is a cellulase family, as the largest group of glycoside hydrolases. Numerous variants of GH5-cellulase family have been identified through the metagenomic approach, including CelGH5 in this study. University-CoE-Research Center for Biomolecule Engineering, Universitas Airlangga successfully isolated CelGH5 from waste decomposition of oil palm empty fruit bunches (OPEFB) soil by metagenomics approach. The properties and structural characteristics of GH5-cellulases from uncultured microorganisms can be studied using computational tools and software. RESULTS The GH5-cellulase family from uncultured microorganisms was characterized using standard computational-based tools. The amino acid sequences and 3D-protein structures were retrieved from the GenBank Database and Protein Data Bank. The physicochemical analysis revealed the sequence length was roughly 332-751 amino acids, with the molecular weight range around 37-83 kDa, dominantly negative charges with pI values below 7. Alanine was the most abundant amino acid making up the GH5-cellulase family and the percentage of hydrophobic amino acids was more than hydrophilic. Interestingly, ten endopeptidases with the highest average number of cleavage sites were found. Another uniqueness demonstrated that there was also a difference in stability between in silico and wet lab. The II values indicated CelGH5 and ACA61162.1 as unstable enzymes, while the wet lab showed they were stable at broad pH range. The program of SOPMA, PDBsum, ProSA, and SAVES provided the secondary and tertiary structure analysis. The predominant secondary structure was the random coil, and tertiary structure has fulfilled the structure quality of QMEAN4, ERRAT, Ramachandran plot, and Z score. CONCLUSION This study can afford the new insights about the physicochemical and structural properties of the GH5-cellulase family from uncultured microorganisms. Furthermore, in silico analysis could be valuable in selecting a highly efficient cellulases for enhanced enzyme production.
Collapse
Affiliation(s)
- Rahmat Eko Sanjaya
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjend. H. Hasan Basry, Banjarmasin, Kalimantan, 70123, Indonesia
| | - Kartika Dwi Asni Putri
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Anita Kurniati
- Mathematics and Natural Science Study Program, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Health, Faculty of Vocational Studies, Kampus B Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Ali Rohman
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Ni Nyoman Tri Puspaningsih
- University-CoE-Research Centre for Bio-Molecule Engineering, 2nd Floor ITD Building, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
- Department of Chemistry, Faculty of Science and Technology, Kampus C Universitas Airlangga, Mulyorejo, Surabaya, East Java, 60115, Indonesia.
| |
Collapse
|
4
|
Nguyen KHV, Dao TK, Nguyen HD, Nguyen KH, Nguyen TQ, Nguyen TT, Nguyen TMP, Truong NH, Do TH. Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function. Anim Biosci 2021; 34:867-879. [PMID: 32882773 PMCID: PMC8100471 DOI: 10.5713/ajas.20.0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Fibronectin 3 (FN3) and immunoglobulin like modules (Ig) are usually collocated beside modular cellulase catalytic domains. However, very few researches have investigated the role of these modules. In a previous study, we have sequenced and analyzed bacterial metagenomic DNA in Vietnamese goats’ rumen and found that cellulase-producing bacteria and cellulase families were dominant. In this study, the properties of modular cellulases and the role of a FN3 in unique endoglucanase belonging to glycosyl hydorlase (GH) family 5 were determined. Methods Based on Pfam analysis, the cellulases sequences containing FN3, Ig modules were extracted from 297 complete open reading frames (ORFs). The alkaline, thermostability, tertiary structure of deduced enzymes were predicted by AcalPred, TBI software, Phyre2 and Swiss models. Then, whole and truncated forms of a selected gene were expressed in Escherichia coli and purified by His-tag affinity column for assessment of FN3 ability to enhance enzyme activity, solubility and conformation. Results From 297 complete ORFs coding for cellulases, 148 sequences containing FN3, Ig were identified. Mostly FN3 appeared in 90.9% beta-glucosidases belonging to glycosyl hydrolase family 3 (GH3) and situated downstream of catalytic domains. The Ig was found upstream of 100% endoglucanase GH9. Rarely FN3 was seen to be situated downstream of X domain and upstream of catalytic domain endoglucanase GH5. Whole enzyme (called XFN3GH5 based on modular structure) and truncate forms FN3, XFN3, FN3GH5, GH5 were cloned in pET22b (+) and pET22SUMO to be expressed in single and fusion forms with a small ubiquitin-related modifier partner (S). The FN3, SFN3 increased GH5 solubility in FN3GH5, SFN3GH5. The SFN3 partly served for GH5 conformation in SFN3GH5, increased modules interaction and enzyme-soluble substrate affinity to enhance SXFN3GH5, SFN3GH5 activities in mixtures. Both SFN3 and SXFN3 did not anchor enzyme on filter paper but exfoliate and separate cellulose chains on filter paper for enzyme hydrolysis. Conclusion Based on these findings, the presence of FN3 module in certain cellulases was confirmed and it assisted for enzyme conformation and activity in both soluble and insoluble substrate.
Collapse
|
5
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
6
|
Yin B, Hui Q, Kashif M, Yu R, Chen S, Ou Q, Wu B, Jiang C. Simultaneous Enhancement of Thermostability and Catalytic Activity of a Metagenome-Derived β-Glucosidase Using Directed Evolution for the Biosynthesis of Butyl Glucoside. Int J Mol Sci 2019; 20:6224. [PMID: 31835569 PMCID: PMC6940790 DOI: 10.3390/ijms20246224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 01/16/2023] Open
Abstract
Butyl glucoside synthesis using bioenzymatic methods at high temperatures has gained increasing interest. Protein engineering using directed evolution of a metagenome-derived β-glucosidase of Bgl1D was performed to identify enzymes with improved activity and thermostability. An interesting mutant Bgl1D187 protein containing five amino acid substitutions (S28T, Y37H, D44E, R91G, and L115N), showed catalytic efficiency (kcat/Km of 561.72 mM-1 s-1) toward ρ-nitrophenyl-β-d-glucopyranoside (ρNPG) that increased by 23-fold, half-life of inactivation by 10-fold, and further retained transglycosidation activity at 50 °C as compared with the wild-type Bgl1D protein. Site-directed mutagenesis also revealed that Asp44 residue was essential to β-glucosidase activity of Bgl1D. This study improved our understanding of the key amino acids of the novel β-glucosidases and presented a raw material with enhanced catalytic activity and thermostability for the synthesis of butyl glucosides.
Collapse
Affiliation(s)
- Bangqiao Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Qinyan Hui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Ran Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Si Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| | - Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
- Department of chemical and biological engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Y.); (Q.H.); (M.K.); (Q.O.)
| |
Collapse
|
7
|
Cui J, Mai G, Wang Z, Liu Q, Zhou Y, Ma Y, Liu C. Metagenomic Insights Into a Cellulose-Rich Niche Reveal Microbial Cooperation in Cellulose Degradation. Front Microbiol 2019; 10:618. [PMID: 30984144 PMCID: PMC6447707 DOI: 10.3389/fmicb.2019.00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
Background Cellulose is the most abundant organic polymer mainly produced by plants in nature. It is insoluble and highly resistant to enzymatic hydrolysis. Cellulolytic microorganisms that are capable of producing a battery of related enzymes play an important role in recycling cellulose-rich plant biomass. Effective cellulose degradation by multiple synergic microorganisms has been observed within a defined microbial consortium in the lab culture. Metagenomic analysis may enable us to understand how microbes cooperate in cellulose degradation in a more complex microbial free-living ecosystem in nature. Results Here we investigated a typical cellulose-rich and alkaline niche where constituent microbes survive through inter-genera cooperation in cellulose utilization. The niche has been generated in an ancient paper-making plant, which has served as an isolated habitat for over 7 centuries. Combined amplicon-based sequencing of 16S rRNA genes and metagenomic sequencing, our analyses showed a microbial composition with 6 dominant genera including Cloacibacterium, Paludibacter, Exiguobacterium, Acetivibrio, Tolumonas, and Clostridium in this cellulose-rich niche; the composition is distinct from other cellulose-rich niches including a modern paper mill, bamboo soil, wild giant panda guts, and termite hindguts. In total, 11,676 genes of 96 glucoside hydrolase (GH) families, as well as 1,744 genes of carbohydrate transporters were identified, and modeling analysis of two representative genes suggested that these glucoside hydrolases likely evolved to adapt to alkaline environments. Further reconstruction of the microbial draft genomes by binning the assembled contigs predicted a mutualistic interaction between the dominant microbes regarding the cellulolytic process in the niche, with Paludibacter and Clostridium acting as helpers that produce endoglucanases, and Cloacibacterium, Exiguobacterium, Acetivibrio, and Tolumonas being beneficiaries that cross-feed on the cellodextrins by oligosaccharide uptake. Conclusion The analysis of the key genes involved in cellulose degradation and reconstruction of the microbial draft genomes by binning the assembled contigs predicted a mutualistic interaction based on public goods regarding the cellulolytic process in the niche, suggesting that in the studied microbial consortium, free-living bacteria likely survive on each other by acquisition and exchange of metabolites. Knowledge gained from this study will facilitate the design of complex microbial communities with a better performance in industrial bioprocesses.
Collapse
Affiliation(s)
- Jinming Cui
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guoqin Mai
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zuowei Wang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Liu
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Zhou
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingfei Ma
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- Institute of Synthetic Biology - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Novel Endotype Xanthanase from Xanthan-Degrading Microbacterium sp. Strain XT11. Appl Environ Microbiol 2019; 85:AEM.01800-18. [PMID: 30413476 DOI: 10.1128/aem.01800-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022] Open
Abstract
Under general aqueous conditions, xanthan appears in an ordered conformation, which makes its backbone largely resistant to degradation by known cellulases. Therefore, the xanthan degradation mechanism is still unclear because of the lack of an efficient hydrolase. Here, we report the catalytic properties of MiXen, a xanthan-degrading enzyme identified from the genus Microbacterium MiXen is a 952-amino-acid protein that is unique to strain XT11. Both the sequence and structural features suggested that MiXen belongs to a new branch of the GH9 family and has a multimodular structure in which a catalytic (α/α)6 barrel is flanked by an N-terminal Ig-like domain and by a C-terminal domain that has very few homologues in sequence databases and functions as a carbohydrate-binding module (CBM). Based on circular dichroism, shear-dependent viscosity, and reducing sugar and gel permeation chromatography analysis, we demonstrated that recombinant MiXen efficiently and randomly cleaved glucosidic bonds within the highly ordered xanthan substrate. A MiXen mutant free of the C-terminal CBM domain partially lost its xanthan-hydrolyzing ability because of decreased affinity toward xanthan, indicating the CBM domain assisted MiXen in hydrolyzing highly ordered xanthan via recognizing and binding to the substrate. Furthermore, side chain substituents and the terminal mannosyl residue significantly influenced the activity of MiXen via the formation of barriers to enzymolysis. Overall, the results of this study provide insight into the hydrolysis mechanism and enzymatic properties of a novel endotype xanthanase that will benefit future applications.IMPORTANCE This work characterized a novel endotype xanthanase, MiXen, and elucidated that the C-terminal carbohydrate-binding module of MiXen could drastically enhance the hydrolysis activity of the enzyme toward highly ordered xanthan. Both the sequence and structural analysis demonstrated that the catalytic domain and carbohydrate-binding module of MiXen belong to the novel branch of the GH9 family and CBMs, respectively. This xanthan cleaver can help further reveal the enzymolysis mechanism of xanthan and provide an efficient tool for the production of molecular modified xanthan with new physicochemical and physiological functions.
Collapse
|
9
|
de Araújo EA, de Oliveira Neto M, Polikarpov I. Biochemical characterization and low-resolution SAXS structure of two-domain endoglucanase BlCel9 from Bacillus licheniformis. Appl Microbiol Biotechnol 2018; 103:1275-1287. [PMID: 30547217 DOI: 10.1007/s00253-018-9508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil
| | - Mário de Oliveira Neto
- Departmento de Física e Biofísica, Universidade Estadual Paulista "Júlio de Mesquita Filho", R. Prof. Dr. Antonio Celso Wagner Zanin 689, Jardim Sao Jose, Botucatu, SP, 18618-970, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
10
|
Schröder C, Burkhardt C, Busch P, Schirrmacher G, Claren J, Antranikian G. Characterization of a Theme C Glycoside Hydrolase Family 9 Endo-Beta-Glucanase from a Biogas Reactor Metagenome. Protein J 2018; 37:454-460. [PMID: 30123929 DOI: 10.1007/s10930-018-9787-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
From a biogas reactor metagenome an ORF (bp_cel9A) encoding a bacterial theme C glycoside hydrolase family 9 (GH9) enzyme was recombinantly produced in E. coli BL21 pQE-80L. BP_Cel9A exhibited ≤ 55% identity to annotated sequences. Subsequently, the enzyme was purified to homogeneity by affinity chromatography. The endo-beta-glucanase BP_Cel9A hydrolyzed the beta-1,3-1,4-linked barley beta-glucan with 24 U/mg at 30 °C and pH 6.0. More than 62% of activity was measured between 10 and 40 °C. Lichenan and xyloglucan were hydrolyzed with 67% and 40% of activity, respectively. The activity towards different substrates varied with different temperatures. However, the enzyme activity on CMC was extremely low (> 1%). In contrast to BP_Cel9A, most GH9 glucanases act preferably on crystalline or soluble cellulose with only side activities towards related substrates. The addition of calcium or magnesium enhanced the activity of BP_Cel9A, especially at higher temperatures. EDTA inhibited the enzyme, whereas EGTA had no effect, suggesting that Mg2+ may adopt the function of Ca2+. BP_Cel9A exhibited a unique substrate spectrum when compared to other GH9 enzymes with great potential for mixed-linked glucan or xyloglucan degrading processes at moderate temperatures.
Collapse
Affiliation(s)
- Carola Schröder
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073, Hamburg, Germany
| | - Christin Burkhardt
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073, Hamburg, Germany
| | - Philip Busch
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073, Hamburg, Germany
| | - Georg Schirrmacher
- Clariant Produkte (Deutschland) GmbH, Group Biotechnology, 81477, Munich, Germany
| | - Jörg Claren
- Clariant Produkte (Deutschland) GmbH, Group Biotechnology, 81477, Munich, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073, Hamburg, Germany.
| |
Collapse
|
11
|
Characterization of truncated endo-β-1,4-glucanases from a compost metagenomic library and their saccharification potentials. Int J Biol Macromol 2018; 115:554-562. [DOI: 10.1016/j.ijbiomac.2018.04.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022]
|
12
|
Ellinghaus TL, Pereira JH, McAndrew RP, Welner DH, DeGiovanni AM, Guenther JM, Tran HM, Feldman T, Simmons BA, Sale KL, Adams PD. Engineering glycoside hydrolase stability by the introduction of zinc binding. Acta Crystallogr D Struct Biol 2018; 74:702-710. [PMID: 29968680 PMCID: PMC6038386 DOI: 10.1107/s2059798318006678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 02/04/2023] Open
Abstract
The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activity with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.
Collapse
Affiliation(s)
- Thomas L. Ellinghaus
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jose H. Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan P. McAndrew
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ditte H. Welner
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joel M. Guenther
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Huu M. Tran
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Taya Feldman
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth L. Sale
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
14
|
Deleting the Ig-Like Domain of Alicyclobacillus acidocaldarius Endoglucanase Cel9A Causes a Simultaneous Increase in the Activity and Stability. Mol Biotechnol 2016; 58:12-21. [PMID: 26537871 DOI: 10.1007/s12033-015-9900-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) is a monomeric enzyme with 537 residues. This enzyme has an Ig-like domain in the N-terminus of the catalytic domain. In this study, the role of the Ig-like domain on the activity, stability, and structural rigidity of AaCel9A and the effect of calcium on enzyme activity and stability were examined by comparing a truncated enzyme with deletion of the Ig-like domain (AaCel9AΔN) to the wild-type enzyme. Our results showed that the deletion of the Ig-like domain increased the catalytic efficiency of the truncated enzyme up to threefold without any significant changes in the K m of the enzyme. Furthermore, pH and temperature optimum for activity were shifted from 6.5 to 7.5 and from 65 to 60 °C, respectively, by deletion of the Ig-like domain. The thermal stability and fluorescence quenching results indicated that the stability and rigidity of the truncated enzyme have been more than that of the wild-type enzyme. Calcium similarly increased the catalytic efficiency of the enzymes (up to 40 %) and remarkably raised the stability of the AaCel9A compared to the AaCel9AΔN. This shows that Ig-like domain has a role in the increase of the enzyme stability by calcium in the wild-type enzyme.
Collapse
|