1
|
Roth J, Hoop CL, Williams JK, Hayes R, Baum J. Probing the effect of glycosaminoglycan depletion on integrin interactions with collagen I fibrils in the native extracellular matrix environment. Protein Sci 2023; 32:e4508. [PMID: 36369695 PMCID: PMC9793976 DOI: 10.1002/pro.4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022]
Abstract
Fibrillar collagen-integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril-integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Cody L. Hoop
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jonathan K. Williams
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Drug Product DevelopmentBristol Myers SquibbNew BrunswickNew JerseyUSA
| | - Robert Hayes
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jean Baum
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
2
|
Bansode S, Bashtanova U, Li R, Clark J, Müller KH, Puszkarska A, Goldberga I, Chetwood HH, Reid DG, Colwell LJ, Skepper JN, Shanahan CM, Schitter G, Mesquida P, Duer MJ. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci Rep 2020; 10:3397. [PMID: 32099005 PMCID: PMC7042214 DOI: 10.1038/s41598-020-60250-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Collagen fibrils are central to the molecular organization of the extracellular matrix (ECM) and to defining the cellular microenvironment. Glycation of collagen fibrils is known to impact on cell adhesion and migration in the context of cancer and in model studies, glycation of collagen molecules has been shown to affect the binding of other ECM components to collagen. Here we use TEM to show that ribose-5-phosphate (R5P) glycation of collagen fibrils - potentially important in the microenvironment of actively dividing cells, such as cancer cells - disrupts the longitudinal ordering of the molecules in collagen fibrils and, using KFM and FLiM, that R5P-glycated collagen fibrils have a more negative surface charge than unglycated fibrils. Altered molecular arrangement can be expected to impact on the accessibility of cell adhesion sites and altered fibril surface charge on the integrity of the extracellular matrix structure surrounding glycated collagen fibrils. Both effects are highly relevant for cell adhesion and migration within the tumour microenvironment.
Collapse
Affiliation(s)
- Sneha Bansode
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Uliana Bashtanova
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rui Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | - Karin H Müller
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Anna Puszkarska
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ieva Goldberga
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Holly H Chetwood
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David G Reid
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jeremy N Skepper
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, Cardiovascular Division, James Black Centre King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Georg Schitter
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040, Vienna, Austria
| | - Patrick Mesquida
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040, Vienna, Austria.
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK.
| | - Melinda J Duer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Nunes AM, Minetti CASA, Remeta DP, Baum J. Magnesium Activates Microsecond Dynamics to Regulate Integrin-Collagen Recognition. Structure 2018; 26:1080-1090.e5. [PMID: 29937357 DOI: 10.1016/j.str.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Integrin receptors bind collagen via metal-mediated interactions that are modulated by magnesium (Mg2+) levels in the extracellular matrix. Nuclear magnetic resonance-based relaxation experiments, isothermal titration calorimetry, and adhesion assays reveal that Mg2+ functions as both a structural anchor and dynamic switch of the α1β1 integrin I domain (α1I). Specifically, Mg2+ binding activates micro- to millisecond timescale motions of residues distal to the binding site, particularly those surrounding the salt bridge at helix 7 and near the metal ion-dependent adhesion site. Mutagenesis of these residues impacts α1I functional activity, thereby suggesting that Mg-bound α1I dynamics are important for collagen binding and consequent allosteric rearrangement of the low-affinity closed to high-affinity open conformation. We propose a multistep recognition mechanism for α1I-Mg-collagen interactions involving both conformational selection and induced-fit processes. Our findings unravel the multifaceted role of Mg2+ in integrin-collagen recognition and assist in elucidating the molecular mechanisms by which metals regulate protein-protein interactions.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Wang Z, Thinn AMM, Zhu J. A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding. J Biol Chem 2017; 292:20756-20768. [PMID: 29079572 DOI: 10.1074/jbc.m117.790519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding βI and αI domains of integrin are the best-studied von Willebrand factor A domains undergoing significant conformational changes for affinity regulation. In both βI and αI domains, the α1- and α7-helixes work in concert to shift the metal-ion-dependent adhesion site between the resting and active states. An absolutely conserved Gly in the middle of the α1-helix of βI helps maintain the resting βI conformation, whereas the homologous position in the αI α1-helix contains a conserved Phe. A functional role of this Phe is structurally unpredictable. Using αLβ2 integrin as a model, we found that the residue volume at the Phe position in the α1-helix is critical for αLβ2 activation because trimming the Phe by small amino acid substitutions abolished αLβ2 binding with soluble and immobilized intercellular cell adhesion molecule 1. Similar results were obtained for αMβ2 integrin. Our experimental and molecular dynamics simulation data suggested that the bulky Phe acts as a pawl that stabilizes the downward ratchet-like movement of β6-α7 loop and α7-helix, required for high-affinity ligand binding. This mechanism may apply to other von Willebrand factor A domains undergoing large conformational changes. We further demonstrated that the conformational cross-talk between αL αI and β2 βI could be uncoupled because the β2 extension and headpiece opening could occur independently of the αI activation. Reciprocally, the αI activation does not inevitably lead to the conformational changes of the β2 subunit. Such loose linkage between the αI and βI is attributed to the αI flexibility and could accommodate the αLβ2-mediated rolling adhesion of leukocytes.
Collapse
Affiliation(s)
- Zhengli Wang
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Aye Myat Myat Thinn
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and.,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jieqing Zhu
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|