1
|
Chou YC. Motor domain of condensin and step formation in extruding loop of DNA. J Biol Phys 2024; 50:307-325. [PMID: 39078528 PMCID: PMC11490595 DOI: 10.1007/s10867-024-09661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
During the asymmetric loop extrusion of DNA by a condensin complex, one domain of the complex stably anchors to the DNA molecule, and another domain reels in the DNA strand into a loop. The DNA strand in the loop is fully relaxed, or there is no tension in the loop. Just outside of the loop, there is a tension that resists the extrusion of DNA. To maintain the extrusion of the DNA loop, the condensin complex must have a domain capable of generating a force to overcome the tension outside of the loop. This study proposes that the groove-shaped HEAT repeat domain Ycg1 plays the role of a molecular motor. A DNA molecule may bind to the groove electrostatically, and the weak binding force facilitates the random thermal motion of DNA molecules. A mechanical model that random collisions between DNA and the nonparallel inner surfaces of the groove may generate a directional force which is required for the loop extrusion to sustain. The hinge domain binds to the DNA molecule and acts as an anchor during asymmetric DNA loop extrusion. When the effects of ATP hydrolysis and the viscous drag of the fluid environment are considered, the motor-anchor model for the condensin complex and the mechanical model might explain the asymmetric loop extrusion, the formation of steps, the step size distribution in the loop extrusion, the tension-dependent extrusion speed, the interaction between coexisting loops on the DNA strand, and untying the knots during extrusion. This model can also explain the observed formation of the Z-loop.
Collapse
Affiliation(s)
- Ya-Chang Chou
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
2
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 PMCID: PMC11603008 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Le ST, Choi S, Lee SW, Kim H, Ahn B. ssDNA reeling is an intermediate step in the reiterative DNA unwinding activity of the WRN-1 helicase. J Biol Chem 2023; 299:105081. [PMID: 37495105 PMCID: PMC10480542 DOI: 10.1016/j.jbc.2023.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
RecQ helicases are highly conserved between bacteria and humans. These helicases unwind various DNA structures in the 3' to 5'. Defective helicase activity elevates genomic instability and is associated with predisposition to cancer and/or premature aging. Recent single-molecule analyses have revealed the repetitive unwinding behavior of RecQ helicases from Escherichia coli to humans. However, the detailed mechanisms underlying this behavior are unclear. Here, we performed single-molecule studies of WRN-1 Caenorhabditis elegans RecQ helicase on various DNA constructs and characterized WRN-1 unwinding dynamics. We showed that WRN-1 persistently repeated cycles of DNA unwinding and rewinding with an unwinding limit of 25 to 31 bp per cycle. Furthermore, by monitoring the ends of the displaced strand during DNA unwinding we demonstrated that WRN-1 reels in the ssDNA overhang in an ATP-dependent manner. While WRN-1 reeling activity was inhibited by a C. elegans homolog of human replication protein A, we found that C. elegans replication protein A actually switched the reiterative unwinding activity of WRN-1 to unidirectional unwinding. These results reveal that reeling-in ssDNA is an intermediate step in the reiterative unwinding process for WRN-1 (i.e., the process proceeds via unwinding-reeling-rewinding). We propose that the reiterative unwinding activity of WRN-1 may prevent extensive unwinding, allow time for partner proteins to assemble on the active region, and permit additional modulation in vivo.
Collapse
Affiliation(s)
- Son Truong Le
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seoyun Choi
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington DC, USA
| | - Seung-Won Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
4
|
Chou YC. Mechanical mechanism for the translocation of hexameric and nonstructural helicases: Dependence on physical parameters. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:21. [PMID: 32303848 DOI: 10.1140/epje/i2020-11944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Three recently observed facts of the translocation of actual hexameric and nonstructural (NS) helicases are related to the various physical quantities and are in accordance with the recently proposed mechanical mechanism: a) the translocation of hexameric helicases might be led by either the N-terminal domain (NTD) or C-terminal domain (CTD) depending on which domain has a smaller central pore, b) the translocation speed (vt) of the ring-shaped helicases and NS helicases decreased with decreasing applied tension, and c) a large difference in the vt of the NS helicase was observed for the helicase translocating on DNA and RNA. These findings are the effects of the physical quantities of the helicase/nuclei acid strands on the translocation of helicases and are difficult to explain with biochemical models. We predict that a similar behavior as described in b) and c) is also shown by hexameric helicases. The validity of the mechanical mechanism is demonstrated in simulation experiments.
Collapse
Affiliation(s)
- Y C Chou
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
Ma G, Hu C, Li S, Gao X, Li H, Hu X. Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. NANOTECHNOLOGY AND PRECISION ENGINEERING 2019. [DOI: 10.1016/j.npe.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Branched unwinding mechanism of the Pif1 family of DNA helicases. Proc Natl Acad Sci U S A 2019; 116:24533-24541. [PMID: 31744872 DOI: 10.1073/pnas.1915654116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe, unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity.
Collapse
|
8
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Makurath MA, Whitley KD, Nguyen B, Lohman TM, Chemla YR. Regulation of Rep helicase unwinding by an auto-inhibitory subdomain. Nucleic Acids Res 2019; 47:2523-2532. [PMID: 30690484 PMCID: PMC6412110 DOI: 10.1093/nar/gkz023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by ‘strand-switching’—during which the helicases alternate between strands of the duplex—which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Collapse
Affiliation(s)
- Monika A Makurath
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin D Whitley
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yann R Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Yerukhimovich MM, Marohnic CC, Frick DN. Role of the Conserved DECH-Box Cysteine in Coupling Hepatitis C Virus Helicase-Catalyzed ATP Hydrolysis to RNA Unwinding. Biochemistry 2018; 57:6247-6255. [PMID: 30281972 DOI: 10.1021/acs.biochem.8b00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DECH-box proteins are a subset of DExH/D-box superfamily 2 helicases possessing a conserved Asp-Glu-Cys-His motif in their ATP binding site. The conserved His helps position the Asp and Glu residues, which coordinate the divalent metal cation that connects the protein to ATP and activate the water molecule needed for ATP hydrolysis, but the role of the Cys is still unclear. This study uses site-directed mutants of the model DECH-box helicase encoded by the hepatitis C virus (HCV) to examine the role of the Cys in helicase action. Proteins lacking a Cys unwound DNA less efficiently than wild-type proteins did. For example, at low protein concentrations, a helicase harboring a Gly instead of the DECH-box Cys unwound DNA more slowly than the wild-type helicase did, but at higher protein concentrations, the two proteins unwound DNA at similar rates. All HCV proteins analyzed had similar affinities for ATP and nucleic acids and hydrolyzed ATP in the presence of RNA at similar rates. However, in the absence of RNA, all proteins lacking a DECH-box cysteine hydrolyzed ATP 10-15 times faster with higher Km values, and lower apparent affinities for metal ions, compared to those observed with wild-type proteins. These differences were observed with proteins isolated from HCV genotypes 2a and 1b, suggesting that this role is conserved. These data suggest the helicase needs Cys292 to bind ATP in a state where ATP is not hydrolyzed until RNA binds.
Collapse
Affiliation(s)
- Mark M Yerukhimovich
- Department of Chemistry & Biochemistry , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - Christopher C Marohnic
- Abbott Laboratories , 100 Abbott Park Road , Abbott Park , Illinois 60064 , United States
| | - David N Frick
- Department of Chemistry & Biochemistry , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
11
|
Banerjee S, Maurya S, Roy R. Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. J Biosci 2018; 43:519-540. [PMID: 30002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-molecule fluorescence methods remain a challenging yet information-rich set of techniques that allow one to probe the dynamics, stoichiometry and conformation of biomolecules one molecule at a time. Viruses are small (nanometers) in size, can achieve cellular infections with a small number of virions and their lifecycle is inherently heterogeneous with a large number of structural and functional intermediates. Single-molecule measurements that reveal the complete distribution of properties rather than the average can hence reveal new insights into virus infections and biology that are inaccessible otherwise. This article highlights some of the methods and recent applications of single-molecule fluorescence in the field of virology. Here, we have focused on new findings in virus-cell interaction, virus cell entry and transport, viral membrane fusion, genome release, replication, translation, assembly, genome packaging, egress and interaction with host immune proteins that underline the advantage of single-molecule approach to the question at hand. Finally, we discuss the challenges, outlook and potential areas for improvement and future use of single-molecule fluorescence that could further aid our understanding of viruses.
Collapse
Affiliation(s)
- Sunaina Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
12
|
Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. J Biosci 2018. [DOI: 10.1007/s12038-018-9769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
14
|
Matthews BW. Protein Science best paper awards to Minfei Su and Chang-Ting Lin. Protein Sci 2018; 27:908-909. [PMID: 29693789 DOI: 10.1002/pro.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
|