1
|
Lu BS, Liu KL, Yin YW, Zhang YP, Qi JC, Zhao CM, Niu YL, Guo PY, Li W. A novel feedback regulation loop of METTL11A-MAFG-NPL4 promotes bladder cancer cell proliferation and tumor progression. FASEB J 2025; 39:e70466. [PMID: 40171788 DOI: 10.1096/fj.202402830r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Abnormal regulation of gene expression results in the malignant proliferation of bladder cancer (BC) cells. We previously demonstrated that NPL4 upregulation promotes BC progression; however, its regulatory and functional mechanisms on downstream genes in BC remain unknown. Transcriptome sequencing and reverse transcription-quantitative polymerase chain reaction were used to identify and confirm METTL11A as a downstream gene of NPL4. Protein interactions were detected through co-immunoprecipitation assays. Cell growth and tumor progression were assessed in vitro and in vivo using colony formation and MTS assays as well as xenograft animal models. Chromatin immunoprecipitation and luciferase activity assays were performed to investigate gene transcription regulation. We identified METTL11A as a downstream gene of NPL4, with its upregulation linked to poor outcomes in BC patients. METTL11A facilitates NPL4-regulated BC cell proliferation by promoting cyclin D1 expression. METTL11A enhances MAFG expression and contributes to METTL11A-mediated cell proliferation. Mechanistically, METTL11A interacts with MAFG, preventing its degradation through K6 methylation modification. MAFG and NRF2 bind to the promoter region of NPL4, promoting its transcription. Thus, the METTL11A-MAFG-NPL4 axis forms a positive feedback loop, promoting BC cell proliferation and tumor progression. Targeted inhibition of this regulatory loop could offer a novel therapeutic approach for BC.
Collapse
Affiliation(s)
- Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen-Ming Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Lin Niu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ping-Ying Guo
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Yan C, Tao Y, Fan J, Dai J, Li S, Huang Q, Zhou R. Generation and characterization of two acid-resistant macrocin O-methyltransferase variants with a higher enzyme activity at 30 °C from Streptomyces fradiae. Comput Struct Biotechnol J 2024; 23:3232-3240. [PMID: 39257526 PMCID: PMC11384511 DOI: 10.1016/j.csbj.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Tylosin is an important macrolide antibiotic produced by Streptomyces fradiae. In the biosynthesis of tylosin, macrocin O-methyltransferase TylF catalyzes the conversion of the side-product tylosin C (macrocin) to the primary component tylosin A (C/A conversion). This conversion is the rate-limiting step in the biosynthesis of tylosin, and affects the quality of the end product. To find a high activity and environment-adapted TylF enzyme, a TylF variant pool has been constructed via protein evolution approach in our previous study (Fan et al., 2023 [41]). In this study, the TylF variants with higher C/A conversion rates were expressed in E. coli and purified. The variants TylFY139F, TylFQ138H, F232Y and TylFT36S, V54A were shown to have a higher C/A conversion rate at 30 °C than that of TylF at 38 °C. Moreover, they had a greater acid resistance and showed more adaptable to the pH change during fermentation. Further protein structural and substrate-binding affinity analyses revealed that the T36S, V54A, Q138H, Y139F, and F232Y mutations enlarged the volume of the substrate-binding pocket, thereby increasing the affinity of enzyme variants for their substrates of SAM and macrocin, and decreasing the inhibition of SAH. Three of the TylF variants were overexpressed in the industrial tylosin-producing S. fradiae strain, and the recombinant strains showed the highest C/A conversion at 30 °C without heating up to 38 °C during the last 24 h of fermentation. This is of great energy-saving significance for tylosin industrial production.
Collapse
Affiliation(s)
- Chaoyue Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujun Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jun Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Shuo Li
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| |
Collapse
|
4
|
Tan L, Li W, Su Q. The comprehensive analysis of the prognostic and functional role of N-terminal methyltransferases 1 in pan-cancer. PeerJ 2023; 11:e16263. [PMID: 37901469 PMCID: PMC10607204 DOI: 10.7717/peerj.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background NTMT1, a transfer methylase that adds methyl groups to the N-terminus of proteins, has been identified as a critical player in tumor development and progression. However, its precise function in pan-cancer is still unclear. To gain a more comprehensive understanding of its role in cancer, we performed a thorough bioinformatics analysis. Methods To conduct our analysis, we gathered data from multiple sources, including RNA sequencing and clinical data from the TCGA database, protein expression data from the UALCAN and HPA databases, and single-cell expression data from the CancerSEA database. Additionally, we utilized TISIDB to investigate the interaction between the tumor and the immune system. To assess the impact of NTMT1 on the proliferation of SNU1076 cells, we performed a CCK8 assay. We also employed cellular immunofluorescence to detect DNA damage and used flow cytometry to measure tumor cell apoptosis. Results Our analysis revealed that NTMT1 was significantly overexpressed in various types of tumors and that high levels of NTMT1 were associated with poor survival outcomes. Functional enrichment analysis indicated that NTMT1 may contribute to tumor development and progression by regulating pathways involved in cell proliferation and immune response. In addition, we found that knockdown of NTMT1 expression led to reduced cell proliferation, increased DNA damage, and enhanced apoptosis in HNSCC cells. Conclusion High expression of NTMT1 in tumors is associated with poor prognosis. The underlying regulatory mechanism of NTMT1 in cancer is complex, and it may be involved in both the promotion of tumor development and the inhibition of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Lifan Tan
- Department of Otolaryngology, West China-Guang’an Hospital, Sichuan University, Guang’an, Sichuan, China
| | - Wensong Li
- Department of Otolaryngology, West China-Guang’an Hospital, Sichuan University, Guang’an, Sichuan, China
| | - Qin Su
- Department of Otolaryngology, The People’s Hospital of Dujiangyan, Dujiangyan, Sichuan, China
| |
Collapse
|
5
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
6
|
Parker HV, Schaner Tooley CE. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. J Biol Chem 2023; 299:104588. [PMID: 36889590 PMCID: PMC10166787 DOI: 10.1016/j.jbc.2023.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
N-terminal protein methylation (Nα-methylation) is a posttranslational modification that influences numerous biological processes by regulating protein stability, protein-DNA interactions, and protein-protein interactions. Although significant progress has been made in understanding the biological roles of Nα-methylation, we still do not completely understand how the modifying methyltransferases are regulated. A common mode of methyltransferase regulation is through complex formation with close family members, and we have previously shown that the Nα-trimethylase METTL11A (NRMT1/NTMT1) is activated through binding of its close homolog METTL11B (NRMT2/NTMT2). Other recent reports indicate that METTL11A co-fractionates with a third METTL family member METTL13, which methylates both the N-terminus and lysine 55 (K55) of eukaryotic elongation factor 1 alpha. Here, using co-immunoprecipitations, mass spectrometry, and in vitro methylation assays, we confirm a regulatory interaction between METTL11A and METTL13 and show that while METTL11B is an activator of METTL11A, METTL13 inhibits METTL11A activity. This is the first example of a methyltransferase being opposingly regulated by different family members. Similarly, we find that METTL11A promotes the K55 methylation activity of METTL13 but inhibits its Nα-methylation activity. We also find that catalytic activity is not needed for these regulatory effects, demonstrating new, noncatalytic functions for METTL11A and METTL13. Finally, we show METTL11A, METTL11B, and METTL13 can complex together, and when all three are present, the regulatory effects of METTL13 take precedence over those of METTL11B. These findings provide a better understanding of Nα-methylation regulation and suggest a model where these methyltransferases can serve in both catalytic and noncatalytic roles.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
7
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Zhou Q, Wu W, Jia K, Qi G, Sun XS, Li P. Design and characterization of PROTAC degraders specific to protein N-terminal methyltransferase 1. Eur J Med Chem 2022; 244:114830. [PMID: 36228414 PMCID: PMC10520980 DOI: 10.1016/j.ejmech.2022.114830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
Abstract
Protein N-terminal methylation catalyzed by N-terminal methyltransferase 1 (NTMT1) is an emerging methylation present in eukaryotes, playing important regulatory roles in various biological and cellular processes. Although dysregulation of NTMT1 has been linked to many diseases such as colorectal cancer, their molecular and cellular mechanisms remain elusive due to inaccessibility to an effective cellular probe. Here we report the design, synthesis, and characterization of the first-in-class NTMT1 degraders based on proteolysis-targeting chimera (PROTAC) strategy. Through a brief structure-activity relationship (SAR) study of linker length, a cell permeable degrader 1 involving a von Hippel-Lindau (VHL) E3 ligase ligand was developed and demonstrated to reduce NTMT1 protein levels effectively and selectively in time- and dose-dependent manners in colorectal carcinoma cell lines HCT116 and HT29. Degrader 1 displayed DC50 = 7.53 μM and Dmax > 90% in HCT116 (cellular IC50 > 100 μM for its parent inhibitor DC541). While degrader 1 had marginal cytotoxicity, it displayed anti-proliferative activity in 2D and 3D culture environment, resulting from cell cycle arrested at G0/G1 phase in HCT116. Label-free global proteomic analysis revealed that degrader 1 induced overexpression of calreticulin (CALR), an immunogenic cell death (ICD) signal protein that is known to elicit antitumor immune response and clinically linked to a high survival rate of patients with colorectal cancer upon its upregulation. Collectively, degrader 1 offers the first selective cellular probe for NTMT1 exploration and a new drug discovery modality for NTMT1-related oncology and diseases.
Collapse
Affiliation(s)
- Qilong Zhou
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA; Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
10
|
Saito T, Asai S, Tanaka N, Nohata N, Minemura C, Koma A, Kikkawa N, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Genome-Wide Super-Enhancer-Based Analysis: Identification of Prognostic Genes in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23169154. [PMID: 36012427 PMCID: PMC9409227 DOI: 10.3390/ijms23169154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Advanced-stage oral squamous cell carcinoma (OSCC) patients are treated with combination therapies, such as surgery, radiation, chemotherapy, and immunotherapy. However, OSCC cells acquire resistance to these treatments, resulting in local recurrence and distant metastasis. The identification of genes involved in drug resistance is essential for improving the treatment of this disease. In this study, we applied chromatin immunoprecipitation sequencing (ChIP-Seq) to profile active enhancers. For that purpose, we used OSCC cell lines that had been exposed to cetuximab for a prolonged period. In total, 64 chromosomal loci were identified as active super-enhancers (SE) according to active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) ChIP-Seq. In addition, a total of 131 genes were located in SE regions, and 34 genes were upregulated in OSCC tissues by TCGA-OSCC analysis. Moreover, high expression of four genes (C9orf89; p = 0.035, CENPA; p = 0.020, PISD; p = 0.0051, and TRAF2; p = 0.0075) closely predicted a poorer prognosis for OSCC patients according to log-rank tests. Increased expression of the four genes (mRNA Z-score ≥ 0) frequently co-occurred in TCGA-OSCC analyses. The high and low expression groups of the four genes showed significant differences in prognosis, suggesting that there are clear differences in the pathways based on the underlying gene expression profiles. These data indicate that potential stratified therapeutic strategies could be used to overcome resistance to drugs (including cetuximab) and further improve responses in drug-sensitive patients.
Collapse
Affiliation(s)
- Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Nozomi Tanaka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
11
|
Conner MM, Parker HV, Falcone DR, Chung G, Schaner Tooley CE. Novel regulation of the transcription factor ZHX2 by N-terminal methylation. Transcription 2022; 13:1-15. [PMID: 35613330 DOI: 10.1080/21541264.2022.2079184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
N-terminal methylation (Nα-methylation) by the methyltransferase NRMT1 is an important post-translational modification that regulates protein-DNA interactions. Accordingly, its loss impairs functions that are reliant on such interactions, including DNA repair and transcriptional regulation. The global loss of Nα-methylation results in severe developmental and premature aging phenotypes, but given over 300 predicted substrates, it is hard to discern which physiological substrates contribute to each phenotype. One of the most striking phenotypes in NRMT1 knockout (Nrmt1-/-) mice is early liver degeneration. To identify the disrupted signaling pathways leading to this phenotype and the NRMT1 substrates involved, we performed RNA-sequencing analysis of control and Nrmt1-/- adult mouse livers. We found both a significant upregulation of transcripts in the cytochrome P450 (CYP) family and downregulation of transcripts in the major urinary protein (MUP) family. Interestingly, transcription of both families is inversely regulated by the transcription factor zinc fingers and homeoboxes 2 (ZHX2). ZHX2 contains a non-canonical NRMT1 consensus sequence, indicating that its function could be directly regulated by Nα-methylation. We confirmed misregulation of CYP and MUP mRNA and protein levels in Nrmt1-/- livers and verified NRMT1 can methylate ZHX2 in vitro. In addition, we used a mutant of ZHX2 that cannot be methylated to directly demonstrate Nα-methylation promotes ZHX2 transcription factor activity and target promoter occupancy. Finally, we show Nrmt1-/- mice also exhibit early postnatal de-repression of ZHX2 targets involved in fetal liver development. Taken together, these data implicate ZHX2 misregulation as a driving force behind the liver phenotype seen in Nrmt1-/- mice.
Collapse
Affiliation(s)
- Meghan M Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Daniela R Falcone
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Improved Cell-Potent and Selective Peptidomimetic Inhibitors of Protein N-Terminal Methyltransferase 1. Molecules 2022; 27:molecules27041381. [PMID: 35209173 PMCID: PMC8874984 DOI: 10.3390/molecules27041381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Protein N-terminal methyltransferase 1 (NTMT1) recognizes a unique N-terminal X-P-K/R motif (X represents any amino acid other than D/E) and transfers 1–3 methyl groups to the N-terminal region of its substrates. Guided by the co-crystal structures of NTMT1 in complex with the previously reported peptidomimetic inhibitor DC113, we designed and synthesized a series of new peptidomimetic inhibitors. Through a focused optimization of DC113, we discovered a new cell-potent peptidomimetic inhibitor GD562 (IC50 = 0.93 ± 0.04 µM). GD562 exhibited improved inhibition of the cellular N-terminal methylation levels of both the regulator of chromosome condensation 1 and the oncoprotein SET with an IC50 value of ~50 µM in human colorectal cancer HCT116 cells. Notably, the inhibitory activity of GD562 for the SET protein increased over 6-fold compared with the previously reported cell-potent inhibitor DC541. Furthermore, GD562 also exhibited over 100-fold selectivity for NTMT1 against several other methyltransferases. Thus, this study provides a valuable probe to investigate the biological functions of NTMT1.
Collapse
|
13
|
Zhang J, Song H, Chen C, Chen L, Dai Y, Sun PH, Zou C, Wang X. Methyltransferase-like protein 11A promotes migration of cervical cancer cells via up-regulating ELK3. Pharmacol Res 2021; 172:105814. [PMID: 34450313 DOI: 10.1016/j.phrs.2021.105814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Cervical cancer is one of the common malignancies in women, which is characterized with high invasion and metastatic tendency in its advanced stage. Increasing evidence indicates that methyltransferase-like (METTL) gene family is involved in the progression of various cancers. However, the functional role of methyltransferase-like gene family in cervical cancer remains unclear. In the present study, we found that METTL11A, a member of the methyltransferase-like gene family, was significantly over-expressed in cervical carcinoma by analyzing TCGA database. This finding was further validated in clinical tissue samples. Moreover, ectopic expression of METTL11A in cervical cancer cell lines promoted cell proliferation and migration both in vitro and in vivo. Differential gene expression analysis in the transcriptomic sequencing data indicated that ELK3 was down-regulated in METTL11A-silenced cervical cancer cells, which was further verified at both protein and mRNA levels. Functional experiments identified that METTL11A promoted migration of cervical cancer cells in an ELK3-dependent manner. This study will promote understanding the mechanism of cervical cancer progression and the functional role of methyltransferase-like gene families in cancers.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Gynaecology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Huibin Song
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics Guangdong Medical University, Dongguan, China
| | - Lipeng Chen
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ping-Hui Sun
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chang Zou
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Xiaoyu Wang
- Department of Gynaecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Tooley JG, Catlin JP, Schaner Tooley CE. CREB-mediated transcriptional activation of NRMT1 drives muscle differentiation. Transcription 2021; 12:72-88. [PMID: 34403304 PMCID: PMC8555533 DOI: 10.1080/21541264.2021.1963627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
The N-terminal methyltransferase NRMT1 is an important regulator of protein/DNA interactions and plays a role in many cellular processes, including mitosis, cell cycle progression, chromatin organization, DNA damage repair, and transcriptional regulation. Accordingly, loss of NRMT1 results in both developmental pathologies and oncogenic phenotypes. Though NRMT1 plays such important and diverse roles in the cell, little is known about its own regulation. To better understand the mechanisms governing NRMT1 expression, we first identified its predominant transcriptional start site and minimal promoter region with predicted transcription factor motifs. We then used a combination of luciferase and binding assays to confirm CREB1 as the major regulator of NRMT1 transcription. We tested which conditions known to activate CREB1 also activated NRMT1 transcription, and found CREB1-mediated NRMT1 expression was increased during recovery from serum starvation and muscle cell differentiation. To determine how NRMT1 expression affects myoblast differentiation, we used CRISPR/Cas9 technology to knock out NRMT1 expression in immortalized C2C12 mouse myoblasts. C2C12 cells depleted of NRMT1 lacked Pax7 expression and were unable to proceed down the muscle differentiation pathway. Instead, they took on characteristics of C2C12 cells that have transdifferentiated into osteoblasts, including increased alkaline phosphatase and type I collagen expression and decreased proliferation. These data implicate NRMT1 as an important downstream target of CREB1 during muscle cell differentiation.
Collapse
Affiliation(s)
- John G. Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Modulation of N-terminal methyltransferase 1 by an N 6-methyladenosine-based epitranscriptomic mechanism. Biochem Biophys Res Commun 2021; 546:54-58. [PMID: 33561748 DOI: 10.1016/j.bbrc.2021.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Protein α-N-methylation is an evolutionarily conserved type of post-translational modification; however, little is known about the regulatory mechanisms for this modification. Methylation at the N6 position of adenosine in mRNAs is dynamic and modulates their stability, splicing, and translational efficiency. Here, we found that the expression of N-terminal methyltransferase 1 (NTMT1) protein is altered by depletion of those genes encoding the reader/writer/eraser proteins of N6-methyladenosine (m6A). We also observed that MRG15 is N-terminally methylated by NTMT1, and this methylation could also be modulated by reader/writer/eraser proteins of m6A. Together, these results revealed a novel m6A-based epitranscriptomic mechanism in regulating protein N-terminal methylation.
Collapse
|
16
|
Mackie BD, Chen D, Dong G, Dong C, Parker H, Schaner Tooley CE, Noinaj N, Min J, Huang R. Selective Peptidomimetic Inhibitors of NTMT1/2: Rational Design, Synthesis, Characterization, and Crystallographic Studies. J Med Chem 2020; 63:9512-9522. [PMID: 32689795 DOI: 10.1021/acs.jmedchem.0c00689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein N-terminal methyltransferases (NTMTs) methylate the α-N-terminal amines of proteins starting with the canonical X-P-K/R motif. Genetic studies imply that NTMT1 regulates cell mitosis and DNA damage repair. Herein, we report the rational design and development of the first potent peptidomimetic inhibitor for NTMT1/2. Biochemical and cocrystallization studies manifest that BM30 (with a half-maximal inhibitory concentration of 0.89 ± 0.10 μM) is a competitive inhibitor to the peptide substrate and noncompetitive to the cofactor S-adenosylmethionine. BM30 exhibits over 100-fold selectivity to NTMT1/2 among a panel of 41 MTs, indicating its potential to achieve high selectivity when targeting the peptide substrate binding site of NTMT1/2. Its cell-permeable analogue DC432 (IC50 of 54 ± 4 nM) decreases the N-terminal methylation level of the regulator of chromosome condensation 1 and SET proteins in HCT116 cells. This proof-of principle study provides valuable probes for NTMT1/2 and highlights the opportunity to develop more cell-potent inhibitors to elucidate the function of NTMTs in the future.
Collapse
Affiliation(s)
- Brianna D Mackie
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cheng Dong
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Haley Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rong Huang
- Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Demetriadou C, Koufaris C, Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics Chromatin 2020; 13:29. [PMID: 32680559 PMCID: PMC7367250 DOI: 10.1186/s13072-020-00352-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023] Open
Abstract
Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.
Collapse
Affiliation(s)
- Christina Demetriadou
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Costas Koufaris
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Antonis Kirmizis
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
18
|
Jia K, Huang G, Wu W, Shrestha R, Wu B, Xiong Y, Li P. In vivo methylation of OLA1 revealed by activity-based target profiling of NTMT1. Chem Sci 2019; 10:8094-8099. [PMID: 31857877 PMCID: PMC6889141 DOI: 10.1039/c9sc02550b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Target profiling of NTMT1 by Hey-SAM revealed that OLA1 undergoes N-terminal methylation catalyzed by NTMT1 in vivo.
N-Terminal methyltransferase 1 (NTMT1) catalyzes the N-terminal methylation of proteins with a specific N-terminal motif after methionine removal. Aberrant N-terminal methylation has been implicated in several cancers and developmental diseases. Together with motif sequence and signal peptide analyses, activity-based substrate profiling of NTMT1 utilizing (E)-hex-2-en-5-ynyl-S-adenosyl-l-methionine (Hey-SAM) revealed 72 potential targets, which include several previously confirmed ones and many unknowns. Target validation using normal and NTMT1 knock-out (KO) HEK293FT cells generated by CRISPR-Cas9 demonstrated that Obg-like ATPase 1 (OLA1), a protein involved in many critical cellular functions, is methylated in vivo by NTMT1. Additionally, Hey-SAM synthesis achieved ≥98% yield for SAH conversion.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Gaochao Huang
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Wei Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Ruben Shrestha
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Bingbing Wu
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| | - Yulan Xiong
- Department of Anatomy and Physiology , Kansas State University , Manhattan , Kansas 66506 , USA
| | - Ping Li
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , USA .
| |
Collapse
|
19
|
Abstract
Protein α‐N‐terminal methylation is catalyzed by protein N‐terminal methyltransferases. The prevalent occurrence of this methylation in ribosomes, myosin, and histones implies its function in protein–protein interactions. Although its full spectrum of function has not yet been outlined, recent discoveries have revealed the emerging roles of α‐N‐terminal methylation in protein–chromatin interactions, DNA damage repair, and chromosome segregation. Herein, an overview of the discovery of protein N‐terminal methyltransferases and functions of α‐N‐terminal methylation is presented. In addition, substrate recognition, mechanisms, and inhibition of N‐terminal methyltransferases are reviewed. Opportunities and gaps in protein α‐N‐terminal methylation are also discussed.
Collapse
Affiliation(s)
- Rong Huang
- Department of Medicinal Chemistry and Molecular PharmacologyCenter for Cancer Research, Institute for Drug DiscoveryPurdue University West Lafayette IN 47907 USA
| |
Collapse
|
20
|
Dong C, Dong G, Li L, Zhu L, Tempel W, Liu Y, Huang R, Min J. An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2. Commun Biol 2018; 1:183. [PMID: 30417120 PMCID: PMC6214909 DOI: 10.1038/s42003-018-0196-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
α-N-terminal methylation of proteins is an important post-translational modification that is catalyzed by two different N-terminal methyltransferases, namely NTMT1 and NTMT2. Previous studies have suggested that NTMT1 is a tri-methyltransferase, whereas NTMT2 is a mono-methyltransferase. Here, we report the first crystal structures, to our knowledge, of NTMT2 in binary complex with S-adenosyl-L-methionine as well as in ternary complex with S-adenosyl-L-homocysteine and a substrate peptide. Our structural observations combined with biochemical studies reveal that NTMT2 is also able to di-/tri-methylate the GPKRIA peptide and di-methylate the PPKRIA peptide, otherwise it is predominantly a mono-methyltransferase. The residue N89 of NTMT2 serves as a gatekeeper residue that regulates the binding of unmethylated versus monomethylated substrate peptide. Structural comparison of NTMT1 and NTMT2 prompts us to design a N89G mutant of NTMT2 that can profoundly alter its catalytic activities and product specificities. Cheng Dong et al. resolve the crystal structure of NTMT2, presenting the molecular basis for substrate recognition. Using structural and biochemical studies, they identified a specific residue within NTMT2 that controls its binding affinity to unmethylated or monomethylated substrates.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Licheng Zhu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada.,School of Life Sciences, Jinggangshan University, 343009, Ji'an, Jiangxi, China
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, M5G1L7, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
21
|
N-terminal acetylation and methylation differentially affect the function of MYL9. Biochem J 2018; 475:3201-3219. [PMID: 30242065 DOI: 10.1042/bcj20180638] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
Deciphering the histone code has illustrated that acetylation or methylation on the same residue can have analogous or opposing roles. However, little is known about the interplay between these post-translational modifications (PTMs) on the same nonhistone residues. We have recently discovered that N-terminal acetyltransferases (NATs) and N-terminal methyltransferases (NRMTs) can have overlapping substrates and identified myosin regulatory light chain 9 (MYL9) as the first confirmed protein to occur in either α-amino-methylated (Nα-methyl) or α-amino-acetylated (Nα-acetyl) states in vivo Here we aim to determine if these PTMs function similarly or create different MYL9 proteoforms with distinct roles. We use enzymatic assays to directly verify MYL9 is a substrate of both NRMT1 and NatA and generate mutants of MYL9 that are exclusive for Nα-acetylation or Nα-methylation. We then employ eukaryotic cell models to probe the regulatory functions of these Nα-PTMs on MYL9. Our results show that, contrary to prevailing dogma, neither of these modifications regulate the stability of MYL9. Rather, exclusive Nα-acetylation promotes cytoplasmic roles of MYL9, while exclusive Nα-methylation promotes the nuclear role of MYL9 as a transcription factor. The increased cytoplasmic activity of Nα-acetylated MYL9 corresponds with increased phosphorylation at serine 19, a key MYL9 activating PTM. Increased nuclear activity of Nα-methylated MYL9 corresponds with increased DNA binding. Nα-methylation also results in a decrease of interactions between the N-terminus of MYL9 and a host of cytoskeletal proteins. These results confirm that Nα-acetylation and Nα-methylation differentially affect MYL9 function by creating distinct proteoforms with different internal PTM patterns and binding properties.
Collapse
|
22
|
Faughn JD, Dean WL, Schaner Tooley CE. The N-terminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation. Protein Sci 2018; 27:1585-1599. [PMID: 30151928 DOI: 10.1002/pro.3456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered by complex formation with close homologs. We work with the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels in a tissue-specific manner. They are both nuclear methyltransferases with overlapping consensus sequences but have distinct enzymatic activities and tissue expression patterns. Co-expression with NRMT2 increases the trimethylation rate of NRMT1, and here we aim to understand how this occurs. We use analytical ultracentrifugation to show that while NRMT1 primarily exists as a dimer and NRMT2 as a monomer, when co-expressed they form a heterotrimer. We use co-immunoprecipitation and molecular modeling to demonstrate in vivo binding and map areas of interaction. While overexpression of NRMT2 increases the half-life of NRMT1, the converse is not true, indicating that NRMT2 may be increasing NRMT1 activity by stabilizing the enzyme. Accordingly, the catalytic activity of NRMT2 is not needed to increase NRMT1 activity or increase its affinity for less preferred substrates. Monomethylation can also not rescue phenotypes seen with loss of trimethylation. Taken together, these data support a model where NRMT2 expression activates NRMT1 activity, not through priming, but by increasing its stability and substrate affinity.
Collapse
Affiliation(s)
- Jon D Faughn
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - William L Dean
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14203
| |
Collapse
|
23
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|