1
|
Rakesh S, Behera K, Krishnan A. Unveiling the structural and functional implications of uncharacterized NSPs and variations in the molecular toolkit across arteriviruses. NAR Genom Bioinform 2025; 7:lqaf035. [PMID: 40213365 PMCID: PMC11983283 DOI: 10.1093/nargab/lqaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/16/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Despite considerable scrutiny of mammalian arterivirus genomes, their genomic architecture remains incomplete, with several unannotated non-structural proteins (NSPs) and the enigmatic absence of methyltransferase (MTase) domains. Additionally, the host range of arteriviruses has expanded to include seven newly sequenced genomes from non-mammalian hosts, which remain largely unannotated and await detailed comparisons alongside mammalian isolates. Utilizing comparative genomics approaches and comprehensive sequence-structure analysis, we provide enhanced genomic architecture and annotations for arterivirus genomes. We identified the previously unannotated C-terminal domain of NSP3 as a winged helix-turn-helix domain and classified NSP7 as a new small β-barrel domain, both likely involved in interactions with viral RNA. NSP12 is identified as a derived variant of the N7-MTase-like Rossmann fold domain that retains core structural alignment with N7-MTases in Nidovirales but likely lacks enzymatic functionality due to the erosion of catalytic residues, indicating a unique role specific to mammalian arteriviruses. In contrast, non-mammalian arteriviruses sporadically retain a 2'-O-MTase and an exonuclease (ExoN) domain, which are typically absent in mammalian arteriviruses, highlighting contrasting evolutionary trends and variations in their molecular toolkit. Similar lineage-specific patterns are observed in the diversification of papain-like proteases and structural proteins. Overall, the study extends our knowledge of arterivirus genomic diversity and evolution.
Collapse
Affiliation(s)
- Siuli Rakesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Kshitij Behera
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| |
Collapse
|
2
|
Watterson JG. The cluster model of energy transduction in biological systems. Biosystems 2024; 240:105213. [PMID: 38616011 DOI: 10.1016/j.biosystems.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The central problem in transduction is to explain how the energy caught from sunlight by chloroplasts becomes biological work. Or to express it in different terms: how does the energy remain trapped in the biological network and not get lost through thermalization into the environment? The pathway consists of an immensely large number of steps crossing hierarchical levels - some upwards, to larger assemblies, others downwards into energy rich molecules - before fuelling an action potential or a contracting cell. Accepting the assumption that steps are executed by protein domains, we expect that transduction mechanisms are the result of conformational changes, which in turn involve rearrangements of the bonds responsible for the protein fold. But why are these essential changes so difficult to detect? In this presentation, the metabolic pathway is viewed as equivalent to an energy conduit composed of equally sized units - the protein domains - rather than a row of catalysts. The flow of energy through them occurs by the same mechanism as through the cytoplasmic medium (water). This mechanism is based on the cluster-wave model of water structure, which successfully explains the transfer of energy through the liquid medium responsible for the build up of osmotic pressure. The analogy to the line of balls called "Newton's cradle" provides a useful comparison, since there the transfer is also invisible to us because the intermediate balls are motionless. It is further proposed that the spatial arrangements of the H-bonds of the α and β secondary structures support wave motion, with the linear and lateral forms of the groups of bonds belonging to the helices and sheets executing the longitudinal and transverse modes, respectively.
Collapse
|
3
|
Smug BJ, Szczepaniak K, Rocha EPC, Dunin-Horkawicz S, Mostowy RJ. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat Commun 2023; 14:7460. [PMID: 38016962 PMCID: PMC10684548 DOI: 10.1038/s41467-023-43236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Biological modularity enhances evolutionary adaptability. This principle is vividly exemplified by bacterial viruses (phages), which display extensive genomic modularity. Phage genomes are composed of independent functional modules that evolve separately and recombine in various configurations. While genomic modularity in phages has been extensively studied, less attention has been paid to protein modularity-proteins consisting of distinct building blocks that can evolve and recombine, enhancing functional and genetic diversity. Here, we use a set of 133,574 representative phage proteins and highly sensitive homology detection to capture instances of domain mosaicism, defined as fragment sharing between two otherwise unrelated proteins, and to understand its relationship with functional diversity in phage genomes. We discover that unrelated proteins from diverse functional classes frequently share homologous domains. This phenomenon is particularly pronounced within receptor-binding proteins, endolysins, and DNA polymerases. We also identify multiple instances of recent diversification via domain shuffling in receptor-binding proteins, neck passage structures, endolysins and some members of the core replication machinery, often transcending distant taxonomic and ecological boundaries. Our findings suggest that ongoing diversification via domain shuffling is reflective of a co-evolutionary arms race, driven by the need to overcome various bacterial resistance mechanisms against phages.
Collapse
Affiliation(s)
- Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology & Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Rafał J Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Reyre JL, Grisel S, Haon M, Xiang R, Gaillard JC, Armengaud J, Guallar V, Margeot A, Arragain S, Berrin JG, Bissaro B. Insights into peculiar fungal LPMO family members holding a short C-terminal sequence reminiscent of phosphate binding motifs. Sci Rep 2023; 13:11586. [PMID: 37463979 DOI: 10.1038/s41598-023-38617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.
Collapse
Affiliation(s)
- Jean-Lou Reyre
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Sacha Grisel
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Mireille Haon
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Ruite Xiang
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Simon Arragain
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France.
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
| |
Collapse
|
5
|
Insertions and deletions mediated functional divergence of Rossmann fold enzymes. Proc Natl Acad Sci U S A 2022; 119:e2207965119. [PMID: 36417431 PMCID: PMC9860332 DOI: 10.1073/pnas.2207965119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleobase-containing coenzymes are hypothesized to be relics of an early RNA-based world that preceded the emergence of proteins. Despite the importance of coenzyme-protein synergisms, their emergence and evolution remain understudied. An excellent target to address this issue is the Rossmann fold, the most catalytically diverse and abundant protein architecture in nature. We investigated two main Rossmann lineages: the nicotinamide adenine dinucleotide phosphate (NAD(P)) and the S-adenosyl methionine (SAM)- binding superfamilies. To identify the evolutionary changes that lead to a coenzyme specificity switch on these superfamilies, we performed structural and sequence-based Hidden Markov model analysis to systematically search for key motifs in their coenzyme-binding pockets. Our analyses revealed that through insertions and deletions (InDels) and a residue substitution, the ancient β1-loop-α1 coenzyme-binding structure of NAD(P) could be reshaped into the SAM-binding β1-loop-α1 structure. To experimentally prove this obsevation, we removed three amino acids from the NAD(P)-binding pocket and solved the structure of the resulting mutant, revealing the characteristic loop features of the SAM-binding pocket. To confirm the binding to SAM, we performed isothermal titration calorimetry measurements. Molecular dynamics simulations also corroborated the role of InDels in abolishing NAD binding and acquiring SAM binding. Our results uncovered how nature may have utilized insertions and deletions to optimize the different coenzyme-binding pockets and the distinct functionalities observed for Rossmann superfamilies. This work also proposes a general mechanism by which protein templates could have been recycled through the course of evolution to adopt different coenzymes and confer distinct chemistries.
Collapse
|
6
|
Mushegian A. Methyltransferases of Riboviria. Biomolecules 2022; 12:1247. [PMID: 36139088 PMCID: PMC9496149 DOI: 10.3390/biom12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded β-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave., Alexandria, VA 22314, USA
| |
Collapse
|
7
|
Abstract
Retroviral elements from endogenous retroviruses have functions in mammalian physiology. The best-known examples are the envelope proteins that function in placenta development and immune suppression. Porcine endogenous retroviruses (PERVs) are an understudied class of endogenous retroviruses that infect cultured human cells, raising concern regarding porcine xenografts. The PERV envelope glycoprotein has also been proposed as a possible swine syncytin with a role in placental development. Despite the growing interest in PERVs, their envelope glycoproteins remain poorly characterized. Here, we successfully determined the postfusion crystal structure of the PERV core fusion ectodomain. The PERV fusion protein structure reveals a conserved class I viral fusion protein six-helix bundle. Biophysical experiments demonstrated that the thermodynamic stability of the PERV fusion protein secondary structure was the same at physiological and acidic pHs. A conserved surface analysis highlights the high degree of sequence conservation among retroviral fusogens in the chain reversal region that facilitates the large-scale conformational change required for membrane fusion. Further structural alignment of class I viral fusogens revealed a phylogenetic clustering that shows evolution into various lineages that correlate with virus mechanisms of cell entry. Our work indicates that structural dendrograms can be used to qualitatively infer insights into the fusion mechanisms of newly discovered class I viral fusogen structures. IMPORTANCE Class I viral fusion proteins represent a diverse group of fusogens that catalyze membrane fusion. Although structural studies have focused on those from exogenous viruses, ancient retroviral infections of germ line cells have immortalized ancient fusogens in eukaryotic genomes. These "fossilized" glycoproteins are poorly defined compared to modern fusogens. In this study, we characterized and determined the structure of the porcine endogenous retrovirus fusogen, an ancient retroviral element captured by swine. This fusion protein revealed remarkable alignment to exogenous retroviral fusion proteins, suggesting that fossil fusogens utilize similar structural determinants to perform membrane fusion. Moreover, structural phylogenetic analysis demonstrates that class I viral fusogens cluster into distinct lineages defined by mechanism of membrane fusion. Our results suggest that structural dendrograms can be used to infer mechanistic insights for uncharacterized fusion proteins.
Collapse
|
8
|
Ogando NS, El Kazzi P, Zevenhoven-Dobbe JC, Bontes BW, Decombe A, Posthuma CC, Thiel V, Canard B, Ferron F, Decroly E, Snijder EJ. Structure-function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Proc Natl Acad Sci U S A 2021; 118:e2108709118. [PMID: 34845015 PMCID: PMC8670481 DOI: 10.1073/pnas.2108709118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.
Collapse
Affiliation(s)
- Natacha S Ogando
- Department of Medical Microbiology, Leiden University Medical Center 2333 ZA Leiden, The Netherlands
| | - Priscila El Kazzi
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France
| | | | - Brenda W Bontes
- Department of Medical Microbiology, Leiden University Medical Center 2333 ZA Leiden, The Netherlands
| | - Alice Decombe
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center 2333 ZA Leiden, The Netherlands
| | - Volker Thiel
- Institute of Virology and Immunology (IVI) 3350 Bern, Switzerland
- De partment of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern 3012 Bern, Switzerland
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France
- European Virus Bioinformatics Center (EVBC), Jena 07743, Germany
| | - François Ferron
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France
- European Virus Bioinformatics Center (EVBC), Jena 07743, Germany
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France;
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
9
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
10
|
Vlachakis D. Genetic and structural analyses of ssRNA viruses pave the way for the discovery of novel antiviral pharmacological targets. Mol Omics 2021; 17:357-364. [PMID: 33725065 DOI: 10.1039/d0mo00173b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the era of big data and artificial intelligence, a lot of new discoveries have influenced the fields of antiviral drug design and pharmacophore identification. Viruses have always been a threat to society in terms of public health and economic stability. Viruses not only affect humans but also livestock and agriculture with a direct impact on food safety, economy and environmental imprint. Most recently, with the pandemic of COVID-19, it was made clear that a single virus can have a devastating impact on global well-being and economy. In this direction, there is an emerging need for the identification of promising pharmacological targets in viruses. Herein, an effort has been made to discuss the current knowledge, state-of-the-art applications and future implications for the main pharmacological targets of single-stranded RNA viruses.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied BIology and Biotechnology, Agricultural University of Athens, Athens, Greece.
| |
Collapse
|
11
|
Medvedev KE, Kinch LN, Dustin Schaeffer R, Pei J, Grishin NV. A Fifth of the Protein World: Rossmann-like Proteins as an Evolutionarily Successful Structural unit. J Mol Biol 2021; 433:166788. [PMID: 33387532 PMCID: PMC7870570 DOI: 10.1016/j.jmb.2020.166788] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The Rossmann-like fold is the most prevalent and diversified doubly-wound superfold of ancient evolutionary origin. Rossmann-like domains are present in a variety of metabolic enzymes and are capable of binding diverse ligands. Discerning evolutionary relationships among these domains is challenging because of their diverse functions and ancient origin. We defined a minimal Rossmann-like structural motif (RLM), identified RLM-containing domains among known 3D structures (20%) and classified them according to their homologous relationships. New classifications were incorporated into our Evolutionary Classification of protein Domains (ECOD) database. We defined 156 homology groups (H-groups), which were further clustered into 123 possible homology groups (X-groups). Our analysis revealed that RLM-containing proteins constitute approximately 15% of the human proteome. We found that disease-causing mutations are more frequent within RLM domains than within non-RLM domains of these proteins, highlighting the importance of RLM-containing proteins for human health.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
12
|
Bhat AS, Kinch LN, Grishin NV. β-Strand-mediated interactions of protein domains. Proteins 2020; 88:1513-1527. [PMID: 32543729 PMCID: PMC8018532 DOI: 10.1002/prot.25970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/10/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023]
Abstract
Protein domains exist by themselves or in combination with other domains to form complex multidomain proteins. Defining domain boundaries in proteins is essential for understanding their evolution and function but is not trivial. More specifically, partitioning domains that interact by forming a single β-sheet is known to be particularly troublesome for automatic structure-based domain decomposition pipelines. Here, we study edge-to-edge β-strand interactions between domains in a protein chain, to help define the boundaries for some more difficult cases where a single β-sheet spanning over two domains gives an appearance of one. We give a number of examples where β-strands belonging to a single β-sheet do not belong to a single domain and highlight the difficulties of automatic domain parsers on these examples. This work can be used as a baseline for defining domain boundaries in homologous proteins or proteins with similar domain interactions in the future.
Collapse
Affiliation(s)
- Archana S. Bhat
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050
| |
Collapse
|
13
|
Ca 2+-based allosteric switches and shape shifting in RGLG1 VWA domain. Comput Struct Biotechnol J 2020; 18:821-833. [PMID: 32308929 PMCID: PMC7155146 DOI: 10.1016/j.csbj.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
RGLG1 is an E3 ubiquitin ligase in Arabidopsis thaliana that participates in ABA signaling and regulates apical dominance. Here, we present crystal structures of RGLG1 VWA domain, revealing two novel calcium ions binding sites (NCBS1 and NCBS2). Furthermore, the structures with guided mutagenesis in NCBS1 prove that Ca2+ ions play important roles in controlling conformational change of VWA, which is stabilized in open state with Ca2+ bound and converted to closed state after Ca2+ removal. This allosteric regulation mechanism is distinct from the ever reported one involving the C-terminal helix in integrin α and β I domains. The mutation of a key residue in NCBS2 do not abolish its Ca2+-binding potential, with no conformational change. MD simulations reveals that open state of RGLG1 VWA has higher ligand affinity than its closed state, consisting with integrin. Structural comparison of ion-free-MIDAS with Mg2+-MIDAS reveals that Mg2+ binding to MIDAS does not induce conformational change. With acquisition of first structure of plant VWA domain in both open state and closed state, we carefully analyze the conformational change and propose a totally new paradigm for its transition of open-closed states, which will be of great value for guiding future researches on VWA proteins and their important biological significance.
Collapse
|
14
|
Medvedev KE, Kinch LN, Schaeffer RD, Grishin NV. Functional analysis of Rossmann-like domains reveals convergent evolution of topology and reaction pathways. PLoS Comput Biol 2019; 15:e1007569. [PMID: 31869345 PMCID: PMC6957218 DOI: 10.1371/journal.pcbi.1007569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/13/2020] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Rossmann folds are ancient, frequently diverged domains found in many biological reaction pathways where they have adapted for different functions. Consequently, discernment and classification of their homologous relations and function can be complicated. We define a minimal Rossmann-like structure motif (RLM) that corresponds for the common core of known Rossmann domains and use this motif to identify all RLM domains in the Protein Data Bank (PDB), thus finding they constitute about 20% of all known 3D structures. The Evolutionary Classification of protein structure Domains (ECOD) classifies RLM domains in a number of groups that lack evidence for homology (X-groups), which suggests that they could have evolved independently multiple times. Closely related, homologous RLM enzyme families can diverge to bind different ligands using similar binding sites and to catalyze different reactions. Conversely, non-homologous RLM domains can converge to catalyze the same reactions or to bind the same ligand with alternate binding modes. We discuss a special case of such convergent evolution that is relevant to the polypharmacology paradigm, wherein the same drug (methotrexate) binds to multiple non-homologous RLM drug targets with different topologies. Finally, assigning proteins with RLM domain to the Enzyme Commission classification suggest that RLM enzymes function mainly in metabolism (and comprise 38% of reference metabolic pathways) and are overrepresented in extant pathways that represent ancient biosynthetic routes such as nucleotide metabolism, energy metabolism, and metabolism of amino acids. In fact, RLM enzymes take part in five out of eight enzymatic reactions of the Wood-Ljungdahl metabolic pathway thought to be used by the last universal common ancestor (LUCA). The prevalence of RLM domains in this ancient metabolism might explain their wide distribution among enzymes.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - R. Dustin Schaeffer
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
15
|
Mura C, Veretnik S, Bourne PE. The Urfold: Structural similarity just above the superfold level? Protein Sci 2019; 28:2119-2126. [PMID: 31599042 PMCID: PMC6863707 DOI: 10.1002/pro.3742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
We suspect that there is a level of granularity of protein structure intermediate between the classical levels of "architecture" and "topology," as reflected in such phenomena as extensive three-dimensional structural similarity above the level of (super)folds. Here, we examine this notion of architectural identity despite topological variability, starting with a concept that we call the "Urfold." We believe that this model could offer a new conceptual approach for protein structural analysis and classification: indeed, the Urfold concept may help reconcile various phenomena that have been frequently recognized or debated for years, such as the precise meaning of "significant" structural overlap and the degree of continuity of fold space. More broadly, the role of structural similarity in sequence↔structure↔function evolution has been studied via many models over the years; by addressing a conceptual gap that we believe exists between the architecture and topology levels of structural classification schemes, the Urfold eventually may help synthesize these models into a generalized, consistent framework. Here, we begin by qualitatively introducing the concept.
Collapse
Affiliation(s)
- Cameron Mura
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Stella Veretnik
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Philip E Bourne
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.,School of Data Science, University of Virginia, Charlottesville, Virginia
| |
Collapse
|