1
|
Xu G, Zhang W, Du J, Cong J, Wang P, Li X, Si X, Wei B. Binding mechanism of inhibitors to DFG-in and DFG-out P38α deciphered using multiple independent Gaussian accelerated molecular dynamics simulations and deep learning. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:101-126. [PMID: 40110797 DOI: 10.1080/1062936x.2025.2475407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
P38α has been identified as a key target for drug design to treat a wide range of diseases. In this study, multiple independent Gaussian accelerated molecular dynamics (GaMD) simulations, deep learning (DL), and the molecular mechanics generalized Born surface area (MM-GBSA) method were used to investigate the binding mechanism of inhibitors (SB2, SK8, and BMU) to DFG-in and DFG-out P38α and clarify the effect of conformational differences in P38α on inhibitor binding. GaMD trajectory-based DL effectively identified important functional domains, such as the A-loop and N-sheet. Post-processing analysis on GaMD trajectories showed that binding of the three inhibitors profoundly affected the structural flexibility and dynamical behaviour of P38α situated at the DFG-in and DFG-out states. The MM-GBSA calculations not only revealed that differences in the binding ability of inhibitors are affected by DFG-in and DFG-out conformations of P38α, but also confirmed that van der Waals interactions are the primary force driving inhibitor-P38α binding. Residue-based free energy estimation identifies hot spots of inhibitor-P38α binding across DFG-in and DFG-out conformations, providing potential target sites for drug design towards P38α. This work is expected to offer valuable theoretical support for the development of selective inhibitors of P38α family members.
Collapse
Affiliation(s)
- G Xu
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - W Zhang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Du
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - J Cong
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - P Wang
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Li
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - X Si
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - B Wei
- Center for Medical Artificial Intelligence, Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
2
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557100. [PMID: 37745327 PMCID: PMC10515791 DOI: 10.1101/2023.09.11.557100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jason W. Rocks
- Department of Physics, Boston University; Boston, MA 02215, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Andrew J. Walters
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Kshitij Rai
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jing Liu
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Pankaj Mehta
- Department of Physics, Boston University; Boston, MA 02215, USA
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Faculty of Computing and Data Science, Boston University; Boston, MA 02215, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University; Glassboro, NJ 08028, USA
| | - Caleb J. Bashor
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Biosciences, Rice University; Houston, TX 77030, USA
| |
Collapse
|
4
|
Welsh CL, Conklin AE, Madan LK. Crystal Structures Reveal Hidden Domain Mechanics in Protein Kinase A (PKA). BIOLOGY 2023; 12:1370. [PMID: 37997969 PMCID: PMC10669547 DOI: 10.3390/biology12111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Cyclic-AMP-dependent protein kinase A (PKA) is a critical enzyme involved in various signaling pathways that plays a crucial role in regulating cellular processes including metabolism, gene transcription, cell proliferation, and differentiation. In this study, the mechanisms of allostery in PKA were investigated by analyzing the vast repertoire of crystal structures available in the RCSB database. From existing structures of murine and human PKA, we elucidated the conformational ensembles and protein dynamics that are altered in a ligand-dependent manner. Distance metrics to analyze conformations of the G-loop were proposed to delineate different states of PKA and were compared to existing structural metrics. Furthermore, ligand-dependent flexibility was investigated through normalized B'-factors to better understand the inherent dynamics in PKA. The presented study provides a contemporary approach to traditional methods in engaging the use of crystal structures for understanding protein dynamics. Importantly, our studies provide a deeper understanding into the conformational ensemble of PKA as the enzyme progresses through its catalytic cycle. These studies provide insights into kinase regulation that can be applied to both PKA individually and protein kinases as a class.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abigail E. Conklin
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lalima K. Madan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Díaz Galicia ME, Aldehaiman A, Hong S, Arold ST, Grünberg R. Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. Methods Enzymol 2019; 621:131-152. [DOI: 10.1016/bs.mie.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|