1
|
Omwansu W, Musembi R, Derese S. Structural characterization of codon 129 polymorphism in prion peptide segments (PrP127-132) using the Markov State Models. J Mol Graph Model 2025; 135:108927. [PMID: 39746241 DOI: 10.1016/j.jmgm.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression. For instance, the prion fragment 127-132 (PrP127-132) has been implicated in the development of variant Creutzfeldt-Jakob disease (vCJD), due to the presence of methionine or valine at codon 129. This study aims to unravel the early structural changes brought by the presence of polymorphism at codon 129. Using molecular dynamics (MD) simulations, we present evidence highlighting a spectrum of structural transitions, uncovering the nuanced conformational heterogeneity governing the polymorphic behavior of the PrP127-132 chain. The Markov state model (MSM) analysis was able to predict several metastable states of these chains and established a kinetic network that describes transitions between these states. Additionally, the MSM analysis showed extra stability of the PrP-M129 polymorph due to less random-coiled motions, the formation of a salt bridge, and an increase in the number of native contacts. The pathogenicity of PrP-V129 can be attributed to enhanced random motion and the absence of a salt bridge.
Collapse
Affiliation(s)
- Wycliffe Omwansu
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Robinson Musembi
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Solomon Derese
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
2
|
Sinane M, Grunberger C, Gentile L, Moriou C, Chaker V, Coutrot P, Guenneguez A, Poullaouec MA, Connan S, Stiger-Pouvreau V, Zubia M, Fleury Y, Cérantola S, Kervarec N, Al-Mourabit A, Petek S, Voisset C. Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest. Mar Drugs 2024; 22:456. [PMID: 39452864 PMCID: PMC11509309 DOI: 10.3390/md22100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (1), aplysamine-2 (2), pseudoceratinine A (3), aerophobin-2 (4), aplysamine-1 (5), and pseudoceratinine B (6) for the first time from the Wallisian sponge Suberea laboutei. We then tested compounds 1-6 and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of 1-3, 5, 6, aplyzanzine C (7), purealidin A (10), psammaplysenes D (11) and F (12), anomoian F (14), and N,N-dimethyldibromotyramine (15). Following biological tests on mammalian cells, we report here the identification of the hitherto unknown ability of the six bromotyrosine derivatives 1, 2, 5, 7, 11, and 14 of marine origin to reduce the spread of the PrPSc prion and the ability of compounds 1 and 2 to reduce endoplasmic reticulum stress. These two biological activities of these bromotyrosine derivatives are, to our knowledge, described here for the first time, offering a new therapeutic perspective for patients suffering from prion diseases that are presently untreatable and consequently fatal.
Collapse
Affiliation(s)
- Maha Sinane
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Colin Grunberger
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Lucile Gentile
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Céline Moriou
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (A.A.-M.)
| | - Victorien Chaker
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Pierre Coutrot
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
| | - Alain Guenneguez
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Marie-Aude Poullaouec
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Solène Connan
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Valérie Stiger-Pouvreau
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Mayalen Zubia
- UPF, Ifremer, ILM, IRD, UMR 241 SECOPOL, BP6570, 98702 Faa’a, Tahiti, French Polynesia;
| | - Yannick Fleury
- Univ Brest, Univ Bretagne Sud, CNRS, LBCM, EMR 6076, F-29000 Quimper, France;
| | | | - Nelly Kervarec
- Univ Brest, Plateforme Spectrométrie de Masse, F-29238 Brest, France;
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (A.A.-M.)
| | - Sylvain Petek
- IRD, CNRS, Ifremer, Univ Brest, LEMAR, IUEM, F-29280 Plouzane, France; (C.G.); (A.G.); (M.-A.P.); (S.C.); (V.S.-P.)
| | - Cécile Voisset
- Univ Brest, Inserm, EFS, UMR 1078, GGB, School of Medicine, F-29200 Brest, France; (M.S.); (L.G.); (V.C.); (P.C.)
- Univ Brest, Inserm, UMR 1101, LaTIM, School of Medicine, F-29200 Brest, France
| |
Collapse
|
3
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
4
|
Chauhan R, Navale GR, Saini S, Panwar A, Kukreti P, Saini R, Roy P, Ghosh K. Modulating the aggregation of human prion protein PrP 106-126 by an indole-based cyclometallated palladium complex. Dalton Trans 2024; 53:11995-12006. [PMID: 38963284 DOI: 10.1039/d4dt00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).
Collapse
Affiliation(s)
- Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol 795004, India
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
5
|
Christoudia N, Bekas N, Kanata E, Chatziefsthathiou A, Pettas S, Karagianni K, Da Silva Correia SM, Schmitz M, Zerr I, Tsamesidis I, Xanthopoulos K, Dafou D, Sklaviadis T. Αnti-prion effects of anthocyanins. Redox Biol 2024; 72:103133. [PMID: 38565068 PMCID: PMC10990977 DOI: 10.1016/j.redox.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Nikoletta Christoudia
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Nikolaos Bekas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Athanasia Chatziefsthathiou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Spyros Pettas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Susana Margarida Da Silva Correia
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany.
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany.
| | - Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
6
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Zeineldin M, Cox-Struble H, Camp P, Farrell D, Pritchard R, Thacker TC, Lehman K. National Prevalence of Caprine Prion Protein Genetic Variability at Codons 146, 211, and 222 in Goat Herds in the United States. Vet Sci 2023; 11:13. [PMID: 38250919 PMCID: PMC10818752 DOI: 10.3390/vetsci11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Scrapie is a neurodegenerative disease that impacts sheep and goats, characterized by gradual and progressive changes in neurological function. Recent research shows that the scrapie incubation period is significantly influenced by specific variations in amino acids within the prion protein gene (PRNP). The objective of this study was to estimate the national prevalence of caprine PRNP genetic variability at codons 146, 211, and 222 in goat populations across the United States. A total of 3052 blood, ear tissue, and brain tissue samples were collected from goats from 50 states. The participating states were categorized into four Veterinary Service (VS) district regions. The samples underwent DNA extraction, and the PRNP variants corresponding to codons 146, 211, and 222 were amplified and sequenced. The analysis of PRNP variants, when compared to the PRNP reference sequence, revealed seven alleles in twelve genotypes. The homozygous 146NN, 211RR, and 222QQ alleles, which have been linked to an increased risk of scrapie, were found to be the most prevalent among all the goats. The heterozygous 222QK, 211RQ, 146SD, 146ND, and 146NS alleles and the homozygous 222KK, 146SS, and 146DD alleles, known to be associated with reduced scrapie susceptibility and a prolonged incubation period after experimental challenge, were found in 1.098% (222QK), 2.33% (211RQ), 0.58% (146SD), 3.13% (146ND), 20.68% (146NS), 0.005% (222KK), 3.31% (146SS), and 0.67% (146DD) of goats, respectively. The 222QK allele was found most frequently in goats tested from the east (VS District 1, 1.59%) and southwest (VS District 4, 1.08%) regions, whereas the 211RQ allele was found most often in goats tested from the Midwest (VS District 2, 8.03%) and east (VS District 1, 6.53%) regions. The 146NS allele was found most frequently in goats tested from the northwest (VS District 3, 29.02%) and southwest (VS District 4, 20.69%) regions. Our results showed that the prevalence of less susceptible genotypes at PRNP codon 146 may be sufficient to use genetic susceptibility testing in some herds. This may reduce the number of goats removed as part of a herd clean-up plan and may promote the selective breeding goats for less susceptible alleles in high-risk herds at the national level.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha 13511, Egypt
| | - Heather Cox-Struble
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Patrick Camp
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - David Farrell
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Randy Pritchard
- Strategy and Policy, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80521, USA
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Kimberly Lehman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| |
Collapse
|
8
|
Adeola AC, Bello SF, Abdussamad AM, Mark AI, Sanke OJ, Onoja AB, Nneji LM, Abdullahi N, Olaogun SC, Rogo LD, Mangbon GF, Pedro SL, Hiinan MP, Mukhtar MM, Ibrahim J, Saidu H, Dawuda PM, Bala RK, Abdullahi HL, Salako AE, Kdidi S, Yahyaoui MH, Yin TT. Polymorphism of prion protein gene (PRNP) in Nigerian sheep. Prion 2023; 17:44-54. [PMID: 36892181 PMCID: PMC10012947 DOI: 10.1080/19336896.2023.2186767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Polymorphism of the prion protein gene (PRNP) gene determines an animal's susceptibility to scrapie. Three polymorphisms at codons 136, 154, and 171 have been linked to classical scrapie susceptibility, although many variants of PRNP have been reported. However, no study has investigated scrapie susceptibility in Nigerian sheep from the drier agro-climate zones. In this study, we aimed to identify PRNP polymorphism in nucleotide sequences of 126 Nigerian sheep by comparing them with public available studies on scrapie-affected sheep. Further, we deployed Polyphen-2, PROVEAN, and AMYCO analyses to determine the structure changes produced by the non-synonymous SNPs. Nineteen (19) SNPs were found in Nigerian sheep with 14 being non-synonymous. Interestingly, one novel SNP (T718C) was identified. There was a significant difference (P < 0.05) in the allele frequencies of PRNP codon 154 between sheep in Italy and Nigeria. Based on the prediction by Polyphen-2, R154H was probably damaging while H171Q was benign. Contrarily, all SNPs were neutral via PROVEAN analysis while two haplotypes (HYKK and HDKK) had similar amyloid propensity of PRNP with resistance haplotype in Nigerian sheep. Our study provides valuable information that could be possibly adopted in programs targeted at breeding for scrapie resistance in sheep from tropical regions.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.,Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Abdussamad M Abdussamad
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria.,Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lotanna M Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lawal D Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | | | | | - Manasseh P Hiinan
- Small Ruminant Section, Solomon Kesinton Agro-Allied Limited Iperu-Remo, Ogun State, Nigeria
| | - Muhammad M Mukhtar
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Hayatu Saidu
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Lesotho, Southern Africa
| | - Rukayya K Bala
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Hadiza L Abdullahi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Medenine, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Medenine, Tunisia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Esmaili M, Eldeeb M. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Mol Biol Rep 2023; 50:1743-1752. [PMID: 36446981 DOI: 10.1007/s11033-022-07806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Mohamed Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
10
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
11
|
Admane N, Srivastava A, Jamal S, Sharma R, Kundu B, Grover A. Molecular insights into the critical role of gallate moiety of green tea catechins in modulating prion fibrillation, cellular internalization, and neuronal toxicity. Int J Biol Macromol 2022; 223:755-765. [PMID: 36368361 DOI: 10.1016/j.ijbiomac.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the β2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and β2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered β-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Salma Jamal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Zhao Y, Pogue AI, Alexandrov PN, Butler LG, Li W, Jaber VR, Lukiw WJ. Alteration of Biomolecular Conformation by Aluminum-Implications for Protein Misfolding Disease. Molecules 2022; 27:5123. [PMID: 36014365 PMCID: PMC9412470 DOI: 10.3390/molecules27165123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum's (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum-biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth's biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum's prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer's disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Cell Biology & Anatomy, LSU Health Science Center, New Orleans, LA 70112, USA
| | | | | | - Leslie G. Butler
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenhong Li
- Department of Pharmacology, Jiangxi University of TCM, Nanchang 330004, China
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotek Research, Toronto, ON M5S 1A8, Canada
- Russian Academy of Medical Sciences, 113152 Moscow, Russian
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, LSU Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
La Penna G, Morante S. Aggregates Sealed by Ions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:309-341. [PMID: 35167080 DOI: 10.1007/978-1-0716-1546-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chapter draws a line connecting some recent results where the role of ions is found essential in sealing more or less pre-organized assemblies of macromolecules. We draw some dots along the line that starts from the effect of the ionic atmosphere and ends with the chemical bonds formed by multivalent ions acting as bridges between macromolecules. Many of these dots involve structurally disordered peptides and disordered regions of proteins. A broad perspective of the role of multivalent ions in assisting the assembly process, shifting population in polymorphic states, and sealing protein aggregates, is suggested.
Collapse
Affiliation(s)
- Giovanni La Penna
- Institute for Chemistry of Organo-Metallic Compounds, National Research Council of Italy, Florence, Italy.
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, Roma, Italy
| |
Collapse
|
14
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
15
|
Coca JR, Eraña H, Castilla J. Biosemiotics comprehension of PrP code and prion disease. Biosystems 2021; 210:104542. [PMID: 34517077 DOI: 10.1016/j.biosystems.2021.104542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Prions or PrPSc (prion protein, Scrapie isoform) are proteins with an aberrant three-dimensional conformation that present the ability to alter the three-dimensional structure of natively folded PrPC (prion protein, cellular isoform) inducing its abnormal folding, giving raise to neurological diseases known as Transmissible spongiforms encephalopathies (TSEs) or prion diseases. In this work, through a biosemiotic study, we will analyze the molecular code of meanings that are known in the molecular pathway of PrPC and how it is altered in prion diseases. This biosemiotic code presents a socio-semiotic correlate in organisms that could be unraveled with the ultimate goal of understanding the code of signs that mediates the process. Finally, we will study recent works that indicate possible relationships in the code between prion proteins and other proteins such as the tau protein and alpha-synuclein to evaluate if it is possible that there is a semiotic expansion of the PrP code and prion diseases in the meaning recently expounded by Prusiner, winner of the Nobel Prize for describing these unusual pathological processes.
Collapse
Affiliation(s)
- Juan R Coca
- Social Research Unit in Health and Rare Diseases, University of Valladolid, Spain.
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Atlas Molecular Pharma S. L., Derio, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Fridmanis J, Toleikis Z, Sneideris T, Ziaunys M, Bobrovs R, Smirnovas V, Jaudzems K. Aggregation Condition-Structure Relationship of Mouse Prion Protein Fibrils. Int J Mol Sci 2021; 22:9635. [PMID: 34502545 PMCID: PMC8431800 DOI: 10.3390/ijms22179635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are associated with conformational conversion of cellular prion protein into a misfolded pathogenic form, which resembles many properties of amyloid fibrils. The same prion protein sequence can misfold into different conformations, which are responsible for variations in prion disease phenotypes (prion strains). In this work, we use atomic force microscopy, FTIR spectroscopy and magic-angle spinning NMR to devise structural models of mouse prion protein fibrils prepared in three different denaturing conditions. We find that the fibril core region as well as the structure of its N- and C-terminal parts is almost identical between the three fibrils. In contrast, the central part differs in length of β-strands and the arrangement of charged residues. We propose that the denaturant ionic strength plays a major role in determining the structure of fibrils obtained in a particular condition by stabilizing fibril core interior-facing glutamic acid residues.
Collapse
Affiliation(s)
- Jēkabs Fridmanis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| | - Zigmantas Toleikis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Tomas Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Raitis Bobrovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (T.S.); (M.Z.); (V.S.)
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (J.F.); (Z.T.); (R.B.)
| |
Collapse
|
17
|
Abstract
Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Caihong Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Zürich, CH-8091, Switzerland
| |
Collapse
|
18
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
19
|
Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals (Basel) 2021; 11:ani11030691. [PMID: 33806658 PMCID: PMC7999988 DOI: 10.3390/ani11030691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.
Collapse
|
20
|
Yan C, Zhou Z. Ellagic acid and pentagalloylglucose are potential inhibitors of prion protein fibrillization. Int J Biol Macromol 2021; 172:371-380. [PMID: 33460657 DOI: 10.1016/j.ijbiomac.2021.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases caused by the conformational transition of the cellular prion protein (PrPC) to the abnormal pathological prion protein (PrPSc). In this work, the effects of ellagic acid (EA) and pentagalloylglucose (PGG) on prion protein (PrP) fibrillization were investigated. Fluorescence quenching experiments indicated that both EA and PGG could specifically interact with native human PrP with binding affinities of 1.92 × 105 and 2.36 × 105 L·mol-1, respectively. Thioflavin-T (ThT) fluorescence assays showed that the binding of EA or PPG could effectively inhibit the nucleation and elongation of PrP fibrilization and reduce the amount of PrP fibrils generated. EA and PGG could also lead to a significant disaggregation of PrP fibrils. Circular dichroism (CD) measurements suggested that EA- or PPG-bound PrP could preserve a higher content of α-helical structures than β-sheet-rich PrP fibrils. The PrP aggregates formed in the presence of EA or PGG showed lower resistance to proteinase K (PK) digestion. Overall, the present work reported the inhibitory effect of EA and PGG on PrP fibrillization. These two natural polyphenols could be potential prodrug molecules for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
21
|
Sirohi PR, Kumari A, Admane N, Somvanshi P, Grover A. The polyphenolic phytoalexin polydatin inhibits amyloid aggregation of recombinant human prion protein. RSC Adv 2021; 11:25901-25911. [PMID: 35479435 PMCID: PMC9037109 DOI: 10.1039/d1ra01891d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 12/01/2022] Open
Abstract
Prion diseases involve misfolded and highly infectious aggregates of prion protein (PrPSc) which forms amyloid plaques leading to fatal neurodegeneration. The absence of clinically proven therapeutics makes the discovery of effective remedial interventions a prime concern. Herein, we report novel prion intervention by the polyphenolic phytoalexin, polydatin which binds with moderate affinity to the recombinant protease resistant core of human prion protein, encompassing the sequence 90–231 (rPrPres) and inhibits its conversion into the highly neurotoxic forms. An extensive evaluation using biophysical techniques revealed that polydatin incubated rPrPres samples generate off-pathway oligomers having reduced cross-β sheet signature, and relatively smaller in size than the native rPrPres oligomers. The detailed structural analysis using molecular dynamics simulations elucidated the induction of antagonistic mobilities in the β2–α2 loop, α3 helix and the N-terminal amyloidogenic region of prions. This study puts forward novel prion fibrillogenesis inhibitory potential of polydatin, specifically by stabilizing the N-terminal amyloidogenic region. Collectively our results affirm the importance of polydatin in crippling the prion pathogenesis and may serve as a structural scaffold for designing novel therapeutic agents targeting amyloidogenic transition in prions. Polydatin is found to be a pharmacologically-significant scaffold that can bind to the rPrPres repertoire and inhibit its conversion to the highly infectious and neurotoxic PrPSc-like form, thus acting like a promising anti-prion drug lead.![]()
Collapse
Affiliation(s)
- Preeti Rana Sirohi
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
- Department of Biotechnology
| | - Anchala Kumari
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | - Nikita Admane
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | - Pallavi Somvanshi
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
- Special Centre of Systems Medicine
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| |
Collapse
|
22
|
Ishikawa T. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? Neural Regen Res 2021; 16:489-495. [PMID: 32985470 PMCID: PMC7996030 DOI: 10.4103/1673-5374.293137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The baker’s yeast Saccharomyces (S.) cerevisiae is a single-celled eukaryotic model organism widely used in research on life sciences. Being a unicellular organism, S. cerevisiae has some evident limitations in application to neuroscience. However, yeast prions are extensively studied and they are known to share some hallmarks with mammalian prion protein or other amyloidogenic proteins found in the pathogenesis of Alzheimer’s, Parkinson’s, or Huntington’s diseases. Therefore, the yeast S. cerevisiae has been widely used for basic research on aggregation properties of proteins in cellulo and on their propagation. Recently, a yeast-based study revealed that some regions of mammalian prion protein and amyloid β1–42 are capable of induction and propagation of yeast prions. It is one of the examples showing that evolutionarily distant organisms share common mechanisms underlying the structural conversion of prion proteins making yeast cells a useful system for studying mammalian prion protein. S. cerevisiae has also been used to design novel screening systems for anti-prion compounds from chemical libraries. Yeast-based assays are cheap in maintenance and safe for the researcher, making them a very good choice to perform preliminary screening before further characterization in systems engaging mammalian cells infected with prions. In this review, not only classical red/white colony assay but also yeast-based screening assays developed during last year are discussed. Computational analysis and research carried out using yeast prions force us to expect that prions are widely present in nature. Indeed, the last few years brought us several examples indicating that the mammalian prion protein is no more peculiar protein – it seems that a better understanding of prion proteins nature-wide may aid us with the treatment of prion diseases and other amyloid-related medical conditions.
Collapse
Affiliation(s)
- Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Inactivation of Prions by Low-Temperature Sterilization Technology Using Vaporized Gas Derived from a Hydrogen Peroxide-Peracetic Acid Mixture. Pathogens 2020; 10:pathogens10010024. [PMID: 33396428 PMCID: PMC7824636 DOI: 10.3390/pathogens10010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/03/2023] Open
Abstract
Prion diseases are proteopathies that cause neurodegenerative disorders in humans and animals. Prion is highly resistant to both chemical and physical inactivation. Here, vaporized gas derived from a hydrogen peroxide–peracetic acid mixture (VHPPA) was evaluated for its ability to inactivate prion using a STERIACE 100 instrument (Saraya Co., Ltd.). Brain homogenates of scrapie (Chandler strain) prion-infected mice were placed on a cover glass, air-dried, sealed in a Tyvek package, and subjected to VHPPA treatment at 50–55 °C using 8% hydrogen peroxide and <10% peracetic acid for 47 min (standard mode, SD) or 30 min (quick mode, QC). Untreated control samples were prepared in the same way but without VHPPA. The resulting samples were treated with proteinase K (PK) to separate PK-resistant prion protein (PrPres), as a marker of the abnormal isoform (PrPSc). Immunoblotting showed that PrPres was reduced by both SD and QC VHPPA treatments. PrPres bands were detected after protein misfolding cyclic amplification of control but not VHPPA-treated samples. In mice injected with prion samples, VHPPA treatment of prion significantly prolonged survival relative to untreated samples, suggesting that it decreases prion infectivity. Taken together, the results show that VHPPA inactivates prions and might be applied to the sterilization of contaminated heat-sensitive medical devices.
Collapse
|
24
|
Louka A, Zacco E, Temussi PA, Tartaglia GG, Pastore A. RNA as the stone guest of protein aggregation. Nucleic Acids Res 2020; 48:11880-11889. [PMID: 33068411 PMCID: PMC7708036 DOI: 10.1093/nar/gkaa822] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold. In particular, an association has recently emerged between aggregation and the assembly of prion-like proteins in RNA-rich complexes, associated with both physiological and pathological events. Here, we discuss the historical rising of the concept of prion-like domains, their relation to RNA and their role in protein aggregation. As a paradigmatic example, we present the case study of TDP-43, an RNA-binding prion-like protein associated with amyotrophic lateral sclerosis. Through this example, we demonstrate how the current definition of prions has incorporated quite different concepts making the meaning of the term richer and more stimulating. An important message that emerges from our analysis is the dual role of RNA in protein aggregation, making RNA, that has been considered for many years a 'silent presence' or the 'stone guest' of protein aggregation, an important component of the process.
Collapse
Affiliation(s)
- Alexandra Louka
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| | - Elsa Zacco
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
- University “Federico II’’ Napoli, via Cynthia, Napoli 80100, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain and ICREA, 23 Passeig Lluıs Companys, Barcelona 08010, Spain
- Charles Darwin department of Biology and Biotechnology, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| |
Collapse
|
25
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
26
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Sakudo A, Imanishi Y, Hirata A, Koga Y, Shintani H. Effect of Nitrogen Gas Plasma Generated by a Fast-Pulsed Power Supply Using a Static Induction Thyristor on Scrapie Prion. Pathogens 2020; 9:pathogens9100819. [PMID: 33036274 PMCID: PMC7599630 DOI: 10.3390/pathogens9100819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies show that nitrogen gas plasma generated by a fast-pulsed power supply using a static induction thyristor has both virucidal and bactericidal effects. In this study, nitrogen gas plasma was further evaluated for its potential effects on prions, which are well known to be the most resistant pathogen to both chemical and physical inactivation. Aliquots (10 μL) of mouse brain homogenate infected with Chandler scrapie prion were spotted onto cover glasses and subjected to nitrogen gas plasma. Treated samples were recovered and subjected to further analyses. Control prion samples were prepared in exactly the same way but without plasma treatment. Protein misfolding cyclic amplification (PMCA) showed that nitrogen gas plasma treatment at 1.5 kilo pulse per second for 15 or 30 min caused a reduction in the in vitro propagation level of PrPres (proteinase K-resistant prion protein), which was used as an index of abnormal prion protein (PrPSc). Moreover, mice injected with prion treated with plasma for 30 min showed longer survival than mice injected with control prion, indicating that nitrogen gas plasma treatment decreased prion infectivity. Altogether, these results suggest that nitrogen gas plasma treatment can inactivate scrapie prions by decreasing the propagation activity and infectivity of PrPSc.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Correspondence:
| | - Yuichiro Imanishi
- NGK Insulators Ltd., Nagoya, Aichi 467-8530, Japan;
- Energy Support Corporation, Inuyama, Aichi 484-8505, Japan
| | - Azumi Hirata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan;
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Hideharu Shintani
- Department of Science and Engineering, Chuo University, Tokyo 112-8551, Japan;
| |
Collapse
|
28
|
Yaeger-Weiss SK, Jennaro TS, Mecha M, Becker JH, Yang H, Winkler GLW, Cavagnero S. Net Charge and Nonpolar Content Guide the Identification of Folded and Prion Proteins. Biochemistry 2020; 59:1881-1895. [DOI: 10.1021/acs.biochem.9b01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Susanna K. Yaeger-Weiss
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Theodore S. Jennaro
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Miranda Mecha
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jenna H. Becker
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Hanming Yang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Gordon L. W. Winkler
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Ma DL, Wu C, Li G, Yung TL, Leung CH. Transition metal complexes as imaging or therapeutic agents for neurodegenerative diseases. J Mater Chem B 2020; 8:4715-4725. [DOI: 10.1039/c9tb02669j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are the result of neurodegeneration, which is the process of losing neuronal functions gradually due to the irreversible damage and death of neurons. Metal complexes have attracted intense interest over recent decades as probes or inhibitors of biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chun Wu
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Tsan-Ling Yung
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
30
|
Baral PK, Yin J, Aguzzi A, James MNG. Transition of the prion protein from a structured cellular form (PrP C ) to the infectious scrapie agent (PrP Sc ). Protein Sci 2019; 28:2055-2063. [PMID: 31583788 DOI: 10.1002/pro.3735] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/07/2022]
Abstract
Prion diseases in mammals are caused by a conformational transition of the cellular prion protein from its native conformation (PrPC ) to a pathological isoform called "prion protein scrapie" (PrPSc ). A molecular level of understanding of this conformational transition will be helpful in unveiling the disease etiology. Experimental structural biological techniques (NMR and X-ray crystallography) have been used to unravel the atomic level structural information for the prion and its binding partners. More than one hundred three-dimensional structures of the mammalian prions have been deposited in the protein databank. Structural studies on the prion protein and its structural transitions will deepen our understanding of the molecular basis of prion pathogenesis and will provide valuable guidance for future structure-based drug discovery endeavors.
Collapse
Affiliation(s)
- Pravas K Baral
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Michael N G James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|