1
|
Guaglianone G, Torrado B, Lin YF, Watkins MC, Wysocki VH, Gratton E, Nowick JS. Elucidating the Oligomerization and Cellular Interactions of a Trimer Derived from Aβ through Fluorescence and Mass Spectrometric Studies. ACS Chem Neurosci 2022; 13:2473-2482. [PMID: 35892278 PMCID: PMC9389591 DOI: 10.1021/acschemneuro.2c00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 01/20/2023] Open
Abstract
Aβ oligomers play a central role in the neurodegeneration observed with Alzheimer's disease. Our laboratory has developed covalently stabilized trimers derived from residues 17-36 of Aβ as model systems for studying Aβ oligomers. In the current study, we apply the emerging techniques of fluorescence lifetime imaging microscopy (FLIM) and native mass spectrometry (native MS) to better understand the assembly and interactions of the oligomer model system 2AT-L in aqueous solutions and with cells. 2AT-L and fluorescently labeled 2AT-L analogues assemble in the membrane-like environment of SDS-PAGE, showing diffuse bands of oligomers in equilibrium. Native ion mobility-mass spectrometry (native IM-MS) of 2AT-L allows for the identification of discrete oligomers in solution and shows similar patterns of oligomer formation between 2AT-L and fluorescently labeled analogues. Fluorescence microscopy with SH-SY5Y cells reveals that fluorescently labeled 2AT-L analogues colocalize within lysosomes. FLIM studies with phasor analysis further elucidate the assembly of 2AT-L within cells and establish the occurrence of FRET, indicating the presence of oligomers within cells. Collectively, these multiple complementary techniques help better understand the complex behavior of the 2AT-L model system.
Collapse
Affiliation(s)
- Gretchen Guaglianone
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Belén Torrado
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Yu-Fu Lin
- Resource
for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Matthew C. Watkins
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Vicki H. Wysocki
- Resource
for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Enrico Gratton
- Laboratory
for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - James S. Nowick
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Guaglianone G, Kreutzer AG, Nowick JS. Synthesis and study of macrocyclic β-hairpin peptides for investigating amyloid oligomers. Methods Enzymol 2021; 656:123-168. [PMID: 34325785 PMCID: PMC9053554 DOI: 10.1016/bs.mie.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemically constrained peptides that self-assemble can be used to better understand the molecular basis of amyloid diseases. The formation of small assemblies of the amyloidogenic peptides and proteins, termed oligomers, is central to amyloid diseases. The use of chemical model systems can help provide insights into the structures and interactions of amyloid oligomers, which are otherwise difficult to study. This chapter describes the use of macrocyclic β-hairpin peptides as model systems to study amyloid oligomers. The first part of the chapter describes the chemical synthesis of the macrocyclic β-hairpin peptides and covalent assemblies thereof. The second part of the chapter describes the characterization of the oligomers formed by the macrocyclic β-hairpin peptides, focusing on SDS-PAGE, size-exclusion chromatography (SEC), and X-ray crystallography. The procedures provided focus on the β-amyloid peptide, but these strategies are applicable to a broad range of amyloid-derived peptides and proteins.
Collapse
Affiliation(s)
| | - Adam G Kreutzer
- Department of Chemistry, University of California, Irvine, CA, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
3
|
Zhang M, Zhang Y, Wu B, Peng Y, Simair AA, Siegel GW, Lu C, Chen T. Intein-mediated recombinant expression of monomeric B22Asp desB30 insulin. BMC Biotechnol 2020; 20:3. [PMID: 31918694 PMCID: PMC6953245 DOI: 10.1186/s12896-020-0598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin controls hyperglycemia caused by diabetes, and virtually all treatments require exogenous insulin. However, the product's extensive post-translational modifications have hindered the manufacture of recombinant insulin. RESULT Here we report a novel production method for a monomeric B22Asp desB30 insulin analog (B22D desB30 insulin). Its precursor, DPIP, is fused to an N-terminal chitin-binding domain and intein self-cleavage tag. The fusion protein is expressed and purified from E. coli and immobilized on chitin resins. DPIP is then released using an optimized pH shift and converted to mature insulin via trypsin digest. The resulting product appears monomeric, > 90% pure and devoid of any exogenous enzyme. CONCLUSION Thus, biologically active insulin analog can be efficiently produced in bacteria and potentially applicable in the treatment of human diabetes.
Collapse
Affiliation(s)
- Minmin Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Yunlong Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Bingnan Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Yanhao Peng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Altaf Ahmed Simair
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China
| | - Geoffery W Siegel
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Division, University of Michigan Medical School, Ann Arbor, MI, 10, USA
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China.
| | - Ting Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Ren Min Rd, Shanghai, 201620, China.
| |
Collapse
|
4
|
Hawk LML, Pittman JM, Moore PC, Srivastava AK, Zerweck J, Williams JTB, Hawk AJ, Sachleben JR, Meredith SC. β-amyloid model core peptides: Effects of hydrophobes and disulfides. Protein Sci 2019; 29:527-541. [PMID: 31710741 DOI: 10.1002/pro.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β-amyloid (Aβ21-30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N-terminal Cys. While Aβ21-30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16-34 led to formation of typical amyloid fibrils. NMR showed no long-range nuclear overhauser effect (nOes) in Aβ21-30, Aβ16-34, or their variants, however. Serial 1 H-15 N-heteronuclear single quantum coherence spectroscopy, 1 H-1 H nuclear overhauser effect spectroscopy, and 1 H-1 H total correlational spectroscopy spectra were used to follow aggregation of Aβ16-34 and Cys-Aβ16-34 at a site-specific level. The addition of an N-terminal Cys residue (in Cys-Aβ16-34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16-34 and Cys-Aβ16-34, according to which Cys-Aβ16-34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.
Collapse
Affiliation(s)
- Laura M L Hawk
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Jay M Pittman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Patrick C Moore
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Atul K Srivastava
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jonathan Zerweck
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Andrew J Hawk
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, The University of Chicago, Chicago, Illinois
| | - Stephen C Meredith
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.,Department of Pathology, The University of Chicago, Chicago, Illinois
| |
Collapse
|