1
|
Liu T, Gu Y, Waleed AA, Fan M, Wang L, Li Y, Qian H. Unveiling the relationship between heat-resistant structure characteristics and inhibitory activity in colored highland barley proteinaceous α-amylase inhibitors. Food Chem 2025; 476:143401. [PMID: 39986068 DOI: 10.1016/j.foodchem.2025.143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Natural α-amylase inhibitors (α-AIs) serve as food processing additives, capable of mitigating postprandial blood glucose levels, but heat resistance limits their application in high-temperature processing. This study delved into the correlation between protein structural characteristics and heat-resistance of colored highland barley (CHB) α-AIs and evaluated the inhibitory activity during chemical modification and in vitro digestion. Results demonstrated that CHB α-AIs were glycoproteins, the inhibitory activity retention rate of black highland barley α-AI salted-out with 0-60 % (NH4)2SO4 (BK1 α-AI) was 56.23 % ± 0.64 %. The protein structure analysis revealed that the preservation of three-dimensional structure was attributed to hydrogen bonds and hydrophobic interactions, and disulfide bonds played a crucial role in maintaining protein folding and activity. Succinylation increased the content of disulfide bonds after heating, and the inhibitory activity retention rate of α-AI noodles increased from 37.72 % ± 2.49 % to 42.79 % ± 0.39 %. These findings provide a theoretical foundation for the application of α-AI in thermally processed foods.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Al-Ansi Waleed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Tavagnacco L, Zanatta M, Buratti E, Bertoldo M, Chiessi E, Appel M, Natali F, Orecchini A, Zaccarelli E. Water slowing down drives the occurrence of the low temperature dynamical transition in microgels. Chem Sci 2024; 15:9249-9257. [PMID: 38903230 PMCID: PMC11186305 DOI: 10.1039/d4sc02650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 06/22/2024] Open
Abstract
The protein dynamical transition marks an increase in atomic mobility and the onset of anharmonic motions at a critical temperature (T d), which is considered relevant for protein functionality. This phenomenon is ubiquitous, regardless of protein composition, structure and biological function and typically occurs at large protein content, to avoid water crystallization. Recently, a dynamical transition has also been reported in non-biological macromolecules, such as poly(N-isopropyl acrylamide) (PNIPAM) microgels, bearing many similarities to proteins. While the generality of this phenomenon is well-established, the role of water in the transition remains a subject of debate. In this study, we use atomistic molecular dynamics (MD) simulations and elastic incoherent neutron scattering (EINS) experiments with selective deuteration to investigate the microscopic origin of the dynamical transition and distinguish water and PNIPAM roles. While a standard analysis of EINS experiments would suggest that the dynamical transition occurs in PNIPAM and water at a similar temperature, simulations reveal a different perspective, also qualitatively supported by experiments. From room temperature down to about 180 K, PNIPAM exhibits only modest changes of dynamics, while water, being mainly hydration water under the probed extreme confinement, significantly slows down and undergoes a mode-coupling transition from diffusive to activated. Our findings therefore challenge the traditional view of the dynamical transition, demonstrating that it occurs in proximity of the water mode-coupling transition, shedding light on the intricate interplay between polymer and water dynamics.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR Institute of Complex Systems, Uos Sapienza Piazzale Aldo Moro 2 00185 Rome Italy
- Department of Physics, Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Marco Zanatta
- Department of Physics, University of Trento Via Sommarive 14 38123 Trento Italy
| | - Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata Via della Ricerca Scientifica I 00133 Rome Italy
| | - Markus Appel
- Institut Laue-Langevin 71 avenue des Martyrs, CS 20156 38042 Grenoble Cedex 9 France
| | - Francesca Natali
- CNR-IOM, Operative Group Grenoble (OGG), Institut Laue Langevin F-38042 Grenoble France
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia Via Alessandro Pascoli 06123 Perugia Italy
- CNR-IOM c/o Dipartimento di Fisica e Geologia, Università di Perugia Via Alessandro Pascoli 06123 Perugia Italy
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza Piazzale Aldo Moro 2 00185 Rome Italy
- Department of Physics, Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| |
Collapse
|
3
|
Russo D, Di Venere A, Wurm FR, Moulin M, Härtlein M, Garvey CJ, Teixeira J. Investigation of the structure of protein-polymer conjugates in solution reveals the impact of protein deuteration and the size of the polymer on its thermal stability. Protein Sci 2024; 33:e5032. [PMID: 38801224 PMCID: PMC11129618 DOI: 10.1002/pro.5032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The conjugation of proteins with polymers offers immense biotechnological potential by creating novel macromolecules. This article presents experimental findings on the structural properties of maltose-binding protein (MBP) conjugated with linear biodegradable polyphosphoester polymers with different molecular weights. We studied isotopic effects on both proteins and polymers. Circular dichroism and fluorescence spectroscopy and small-angle neutron scattering reveal that the conjugation process destabilizes the protein, affecting the secondary more than the tertiary structure, even at room temperature, and that the presence of two domains in the MBP may contribute to its observed instability. Notably, unfolding temperatures differ between native MBP and the conjugates. In particular, this study sheds light on the complex interplay of factors such as the deuteration influencing protein stability and conformational changes in the conjugation processes. The perdeuteration influences the hydrogen bond network and hydrophobic interactions in the case of the MBP protein. The perdeuteration of the protein influences the hydrogen bond network and hydrophobic interactions. This is evident in the decreased thermal stability of deuterated MBP protein, in the conjugate, especially with high-molecular-mass polymers.
Collapse
Affiliation(s)
- Daniela Russo
- CNR‐IOM (Italy) & Institut Laue LangevinGrenobleFrance
| | | | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Martine Moulin
- ILL Deuteration LaboratoryPartnership for Structural BiologyGrenobleFrance
| | - Michael Härtlein
- ILL Deuteration LaboratoryPartnership for Structural BiologyGrenobleFrance
| | - Christopher J. Garvey
- Forschungsneutronenquelle Heinz Maier‐Leibnitz FRM II and Physik Department E13Technische Universität MünchenGarchingGermany
| | - José Teixeira
- Laboratoire Léon Brillouin (CEA/CNRS)CEA SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Galvagnion C, Barclay A, Makasewicz K, Marlet FR, Moulin M, Devos JM, Linse S, Martel A, Porcar L, Sparr E, Pedersen MC, Roosen-Runge F, Arleth L, Buell AK. Structural characterisation of α-synuclein-membrane interactions and the resulting aggregation using small angle scattering. Phys Chem Chem Phys 2024; 26:10998-11013. [PMID: 38526443 DOI: 10.1039/d3cp05928f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid β, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.
Collapse
Affiliation(s)
- Céline Galvagnion
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Abigail Barclay
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Katarzyna Makasewicz
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | | | - Martine Moulin
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Juliette M Devos
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Emma Sparr
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | | | - Felix Roosen-Runge
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
- Department of Biomedical Sciences and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Stief T, Vormann K, Lakomek NA. Sensitivity-enhanced NMR 15N R 1 and R 1ρ relaxation experiments for the investigation of intrinsically disordered proteins at high magnetic fields. Methods 2024; 223:1-15. [PMID: 38242384 DOI: 10.1016/j.ymeth.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
NMR relaxation experiments provide residue-specific insights into the structural dynamics of proteins. Here, we present an optimized set of sensitivity-enhanced 15N R1 and R1ρ relaxation experiments applicable to fully protonated proteins. The NMR pulse sequences are conceptually similar to the set of TROSY-based sequences and their HSQC counterpart (Lakomek et al., J. Biomol. NMR 2012). Instead of the TROSY read-out scheme, a sensitivity-enhanced HSQC read-out scheme is used, with improved and easier optimized water suppression. The presented pulse sequences are applied on the cytoplasmic domain of the SNARE protein Synpatobrevin-2 (Syb-2), which is intrinsically disordered in its monomeric pre-fusion state. A two-fold increase in the obtained signal-to-noise ratio is observed for this intrinsically disordered protein, therefore offering a four-fold reduction of measurement time compared to the TROSY-detected version. The inter-scan recovery delay can be shortened to two seconds. Pulse sequences were tested at 600 MHz and 1200 MHz 1H Larmor frequency, thus applicable over a wide magnetic field range. A comparison between protonated and deuterated protein samples reveals high agreement, indicating that reliable 15N R1 and R1ρ rate constants can be extracted for fully protonated and deuterated samples. The presented pulse sequences will benefit not only for IDPs but also for an entire range of low and medium-sized proteins.
Collapse
Affiliation(s)
- Tobias Stief
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Vormann
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci U S A 2023; 120:e2310944120. [PMID: 38085782 PMCID: PMC10743466 DOI: 10.1073/pnas.2310944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.
Collapse
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - T. Reid Alderson
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Enrico Rennella
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - James M. Aramini
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Lewis E. Kay
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
7
|
Chen SH, Weiss KL, Stanley C, Bhowmik D. Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing. Protein Sci 2023; 32:e4772. [PMID: 37646172 PMCID: PMC10503416 DOI: 10.1002/pro.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Characterizing structural ensembles of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins is essential for studying structure-function relationships. Due to the different neutron scattering lengths of hydrogen and deuterium, selective labeling and contrast matching in small-angle neutron scattering (SANS) becomes an effective tool to study dynamic structures of disordered systems. However, experimental timescales typically capture measurements averaged over multiple conformations, leaving complex SANS data for disentanglement. We hereby demonstrate an integrated method to elucidate the structural ensemble of a complex formed by two IDRs. We use data from both full contrast and contrast matching with residue-specific deuterium labeling SANS experiments, microsecond all-atom molecular dynamics (MD) simulations with four molecular mechanics force fields, and an autoencoder-based deep learning (DL) algorithm. From our combined approach, we show that selective deuteration provides additional information that helps characterize structural ensembles. We find that among the four force fields, a99SB-disp and CHARMM36m show the strongest agreement with SANS and NMR experiments. In addition, our DL algorithm not only complements conventional structural analysis methods but also successfully differentiates NMR and MD structures which are indistinguishable on the free energy surface. Lastly, we present an ensemble that describes experimental SANS and NMR data better than MD ensembles generated by one single force field and reveal three clusters of distinct conformations. Our results demonstrate a new integrated approach for characterizing structural ensembles of IDPs.
Collapse
Affiliation(s)
- Serena H. Chen
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Kevin L. Weiss
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Christopher Stanley
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Debsindhu Bhowmik
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
8
|
Kümmerer F, Orioli S, Lindorff-Larsen K. Fitting Force Field Parameters to NMR Relaxation Data. J Chem Theory Comput 2023. [PMID: 37276045 DOI: 10.1021/acs.jctc.3c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an approach to optimize force field parameters using time-dependent data from NMR relaxation experiments. To do so, we scan parameters in the dihedral angle potential energy terms describing the rotation of the methyl groups in proteins and compare NMR relaxation rates calculated from molecular dynamics simulations with the modified force fields to deuterium relaxation measurements of T4 lysozyme. We find that a small modification of Cγ methyl groups improves the agreement with experiments both for the protein used to optimize the force field and when validating using simulations of CI2 and ubiquitin. We also show that these improvements enable a more effective a posteriori reweighting of the MD trajectories. The resulting force field thus enables more direct comparison between simulations and side-chain NMR relaxation data and makes it possible to construct ensembles that better represent the dynamics of proteins in solution.
Collapse
Affiliation(s)
- Felix Kümmerer
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simone Orioli
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Ekanayake KB, Mahawaththa MC, Qianzhu H, Abdelkader EH, George J, Ullrich S, Murphy RB, Fry SE, Johansen-Leete J, Payne RJ, Nitsche C, Huber T, Otting G. Probing Ligand Binding Sites on Large Proteins by Nuclear Magnetic Resonance Spectroscopy of Genetically Encoded Non-Canonical Amino Acids. J Med Chem 2023; 66:5289-5304. [PMID: 36920850 DOI: 10.1021/acs.jmedchem.3c00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
N6-(((trimethylsilyl)-methoxy)carbonyl)-l-lysine (TMSK) and N6-trifluoroacetyl-l-lysine (TFAK) are non-canonical amino acids, which can be installed in proteins by genetic encoding. In addition, we describe a new aminoacyl-tRNA synthetase specific for N6-(((trimethylsilyl)methyl)-carbamoyl)-l-lysine (TMSNK), which is chemically more stable than TMSK. Using the dimeric SARS-CoV-2 main protease (Mpro) as a model system with three different ligands, we show that the 1H and 19F nuclei of the solvent-exposed trimethylsilyl and CF3 groups produce intense signals in the nuclear magnetic resonance (NMR) spectrum. Their response to active-site ligands differed significantly when positioned near rather than far from the active site. Conversely, the NMR probes failed to confirm the previously reported binding site of the ligand pelitinib, which was found to enhance the activity of Mpro by promoting the formation of the enzymatically active dimer. In summary, the amino acids TMSK, TMSNK, and TFAK open an attractive path for site-specific NMR analysis of ligand binding to large proteins of limited stability and at low concentrations.
Collapse
Affiliation(s)
- Kasuni B Ekanayake
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mithun C Mahawaththa
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Elwy H Abdelkader
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Rhys B Murphy
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sarah E Fry
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jason Johansen-Leete
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Gottfried Otting
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Vugmeyster L, Nichols PJ, Ostrovsky D, McKnight CJ, Vögeli B. Slow methyl axes motions in perdeuterated villin headpiece subdomain probed by cross-correlated NMR relaxation measurements. MAGNETOCHEMISTRY (BASEL, SWITZERLAND) 2023; 9:33. [PMID: 36776538 PMCID: PMC9910280 DOI: 10.3390/magnetochemistry9010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO 80204
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
11
|
Buratti E, Tavagnacco L, Zanatta M, Chiessi E, Buoso S, Franco S, Ruzicka B, Angelini R, Orecchini A, Bertoldo M, Zaccarelli E. The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Ramos J, Laux V, Haertlein M, Forsyth VT, Mossou E, Larsen S, Langkilde AE. The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme. Acta Crystallogr D Struct Biol 2021; 77:1579-1590. [PMID: 34866613 PMCID: PMC8647175 DOI: 10.1107/s2059798321010950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97-Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle ST5 5BG, United Kingdom
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden
- LINXS Institute for Advanced Neutron and X-ray Science, Scheelvagen 19, 223 70 Lund, Sweden
| | - Estelle Mossou
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Guo YT, Xiao YH, Zhang JG, Bian SD, Zhou JZ, Wu DY, Tian ZQ. Inspecting the structural characteristics of chiral drug penicillamine under different pH conditions using Raman optical activity spectroscopy and DFT calculations. Phys Chem Chem Phys 2021; 23:22119-22132. [PMID: 34580687 DOI: 10.1039/d1cp02219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the structural characteristics of chiral drugs in physiological environments is a challenging research topic, which may lead to a better understanding of how the drugs work. Raman optical activity (ROA) spectroscopy in combination with density functional theory (DFT) calculations was exploited to inspect the structural changes in penicillamine under different acid-base states in aqueous solutions. The B3LYP/aug-cc-PVDZ method was employed and the implicit solvation model density (SMD) was considered for describing the solvation effect in H2O. The conformations of penicillamine varied with pH, but penicillamine was liable to stabilize in the form of the PC conformation (the sulfur atom is in a trans orientation with respect to carboxylate) in most cases for both D- and L-isomers. The relationship between the conformations of penicillamine and the ROA peaks, as well as peak assignments, were comprehensively studied and elucidated. In the fingerprint region, two ROA couplets and one ROA triplet with different patterns were recognized. The intensity, sign and frequency of the corresponding peaks also changed with varying pH. Deuteration was carried out to identify the vibrational modes, and the ROA peaks of the deuterated amino group in particular are sensitive to change in the ambient environment. The results are expected not only to serve as a reference for the interpretation of the ROA spectra of penicillamine and other chiral drugs with analogous structures but also to evaluate the structural changes of chiral molecules in physiological environments, which will form the basis of further exploration of the effects of structural characteristics on the pharmacological and toxicological properties of chiral drugs.
Collapse
Affiliation(s)
- Yu-Ting Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Ji-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Si-Da Bian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Kümmerer F, Orioli S, Harding-Larsen D, Hoffmann F, Gavrilov Y, Teilum K, Lindorff-Larsen K. Fitting Side-Chain NMR Relaxation Data Using Molecular Simulations. J Chem Theory Comput 2021; 17:5262-5275. [PMID: 34291646 DOI: 10.1021/acs.jctc.0c01338] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins display a wealth of dynamical motions that can be probed using both experiments and simulations. We present an approach to integrate side-chain NMR relaxation measurements with molecular dynamics simulations to study the structure and dynamics of these motions. The approach, which we term ABSURDer (average block selection using relaxation data with entropy restraints), can be used to find a set of trajectories that are in agreement with relaxation measurements. We apply the method to deuterium relaxation measurements in T4 lysozyme and show how it can be used to integrate the accuracy of the NMR measurements with the molecular models of protein dynamics afforded by the simulations. We show how fitting of dynamic quantities leads to improved agreement with static properties and highlight areas needed for further improvements of the approach.
Collapse
Affiliation(s)
- Felix Kümmerer
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simone Orioli
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.,Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - David Harding-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Falk Hoffmann
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Yulian Gavrilov
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Ramos J, Laux V, Haertlein M, Boeri Erba E, McAuley KE, Forsyth VT, Mossou E, Larsen S, Langkilde AE. Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme. IUCRJ 2021; 8:372-386. [PMID: 33953924 PMCID: PMC8086161 DOI: 10.1107/s2052252521001299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
This structural and biophysical study exploited a method of perdeuterating hen egg-white lysozyme based on the expression of insoluble protein in Escherichia coli followed by in-column chemical refolding. This allowed detailed comparisons with perdeuterated lysozyme produced in the yeast Pichia pastoris, as well as with unlabelled lysozyme. Both perdeuterated variants exhibit reduced thermal stability and enzymatic activity in comparison with hydrogenated lysozyme. The thermal stability of refolded perdeuterated lysozyme is 4.9°C lower than that of the perdeuterated variant expressed and secreted in yeast and 6.8°C lower than that of the hydrogenated Gallus gallus protein. However, both perdeuterated variants exhibit a comparable activity. Atomic resolution X-ray crystallographic analyses show that the differences in thermal stability and enzymatic function are correlated with refolding and deuteration effects. The hydrogen/deuterium isotope effect causes a decrease in the stability and activity of the perdeuterated analogues; this is believed to occur through a combination of changes to hydrophobicity and protein dynamics. The lower level of thermal stability of the refolded perdeuterated lysozyme is caused by the unrestrained Asn103 peptide-plane flip during the unfolded state, leading to a significant increase in disorder of the Lys97-Gly104 region following subsequent refolding. An ancillary outcome of this study has been the development of an efficient and financially viable protocol that allows stable and active perdeuterated lysozyme to be more easily available for scientific applications.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Elisabetta Boeri Erba
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, Université de Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Katherine E. McAuley
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Estelle Mossou
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, United Kingdom
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
|
18
|
Abdelkader EH, Qianzhu H, Tan YJ, Adams LA, Huber T, Otting G. Genetic Encoding of N6-(((Trimethylsilyl)methoxy)carbonyl)-l-lysine for NMR Studies of Protein–Protein and Protein–Ligand Interactions. J Am Chem Soc 2021; 143:1133-1143. [DOI: 10.1021/jacs.0c11971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Adams
- ARC Training Centre for Fragment Based Design and Monash Fragment Platform, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
19
|
Nichols PJ, Falconer I, Griffin A, Mant C, Hodges R, McKnight CJ, Vögeli B, Vugmeyster L. Deuteration of nonexchangeable protons on proteins affects their thermal stability, side-chain dynamics, and hydrophobicity. Protein Sci 2020; 29:1641-1654. [PMID: 32356390 DOI: 10.1002/pro.3878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 11/06/2022]
Abstract
We have investigated the effect of deuteration of non-exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well-known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G-binding domain of protein G (GB3). Reversed-phase high-performance liquid chromatography (RP-HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP-HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross-correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub-nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα -Cβ sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Isaac Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| | - Colin Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher J McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| |
Collapse
|