1
|
Liu C, Zeng Q, Ju X, Chen H, Zhou S, Zheng J, Wang K, Guo Q, Liu J. Ponceau S as a Targeted Modulator for Protein Liquid-Liquid Phase Separation. Anal Chem 2025; 97:10570-10577. [PMID: 40353860 DOI: 10.1021/acs.analchem.4c06432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Liquid-liquid phase separation (LLPS) in proteins is essential for cellular organization and biomolecular condensation. However, current methods to induce phase separation often lack precise spatiotemporal control. This study introduces Ponceau S as a selective modulator and monitors phase separation in bovine serum albumin and lysozyme. We demonstrate that Ponceau S effectively promotes the protein complex into liquid droplets by binding to hydrophobic regions and driving intermolecular interactions. Notably, Ponceau S fluorescence increases within protein-rich phases, reflecting the restricted molecular motion in these environments. Furthermore, the phase separation induced by Ponceau S is finely tunable through salt and 1,6-hexanediol adjustments, which influence droplet fusion and dissolution dynamics. This work highlights the potential of small molecules like Ponceau S to precisely regulate and monitor protein phase separation, providing a new dimension of control for applications in biomolecular engineering, drug delivery, and synthetic biology.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qingpeng Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiuqin Ju
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Tsanai M, Head-Gordon T. Determining the Role of Electrostatics in the Making and Breaking of the Caprin1-ATP Nanocondensate. J Phys Chem B 2025; 129:4705-4714. [PMID: 40314620 DOI: 10.1021/acs.jpcb.5c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
We employ a multiscale computational approach to investigate the condensation process of the C-terminal low-complexity region of the Caprin1 protein as a function of increasing ATP concentration for three states: the initial mixed state, nanocondensate formation, and dissolution of the droplet as it reenters the mixed state. We show that upon condensation, ATP assembles via pi-pi interactions, resulting in the formation of a large cluster of stacked ATP molecules stabilized by sodium counterions. The surface of the ATP assembly interacts with the arginine-rich regions of the Caprin1 protein, particularly with its N-terminus, to promote the complete phase-separated droplet on a length scale of tens of nanometers. In order to understand droplet stability, we analyzed the near-surface electrostatic potential (NS-ESP) of Caprin1 and estimated the zeta potential of the Caprin1-ATP assemblies. We predict a positive NS-ESP at the Caprin1 surface for low ATP concentrations that defines the early mixed state, in excellent agreement with the NS-ESP obtained from NMR experiments using paramagnetic resonance enhancement. By contrast, the NS-ESP of Caprin1 at the surface of the nanocondensate at moderate levels of ATP is highly negative compared to that at the mixed state, and estimates of a large zeta potential outside the highly dense region of charge further explain the remarkable stability of this phase-separated droplet assembly. As ATP concentrations rise further, the strong electrostatic forces needed for nanocondensate stability are replaced by weaker Caprin1-ATP interactions that drive the re-entry into the mixed state that exhibits a much lower zeta potential.
Collapse
Affiliation(s)
- Maria Tsanai
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Bhattacharya I, Hautke A, Rossi E, Stevens L, Marick A, Bera A, Das T, Ferrarini A, Sulpizi M, Ebbinghaus S, Mitra RK. Non-monotonous Concentration Dependent Solvation of ATP Could Help to Rationalize Its Anomalous Impact on Various Biophysical Processes. J Phys Chem Lett 2025; 16:4305-4314. [PMID: 40266569 DOI: 10.1021/acs.jpclett.5c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Adenosine triphosphate (ATP), one of the biologically most important molecules, offers certain anomalous behavior during folding and liquid-liquid phase separation of proteins and RNAs. ATP can act as a "biological hydrotrope", i.e., it solubilizes hydrophobic proteins or other biomolecules. However, upon exceeding the physiological concentration range (2-10 mM), aggregation of proteins and RNAs is promoted, an effect that is not understood yet. Here we present a time-domain and frequency-domain Terahertz (THz) spectroscopic investigation to understand the solvation of ATP with varying concentration in the range of 2-15 mM. Both time and frequency domain studies of the solvation of adenosine (Adn), sodium triphosphate (TPP), and ATP elucidate that both the adenosine as well as the triphosphate moiety contribute to nearly equal propensity towards the solvation structure of ATP at low concentrations. However, at higher concentrations (>10 mM), the effect of the adenosine moiety dominates, which leads to a more structured solvation shell followed by slower relaxation dynamics. This is due to the triphosphate-driven ATP aggregation with a reduced amount of water-exposed triphosphate groups, as revealed by molecular dynamics simulations. These observations could lead to an understanding of the complex role of ATP in different biological systems.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alexander Hautke
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Emma Rossi
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Laurie Stevens
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Aritra Marick
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Asesh Bera
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Tanushree Das
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alberta Ferrarini
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
| | - Marialore Sulpizi
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Simon Ebbinghaus
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| |
Collapse
|
4
|
Do TM, Matubayasi N, Horinek D. Development of a force field for ATP - how charge scaling controls self-association. Phys Chem Chem Phys 2025; 27:6325-6333. [PMID: 40066822 DOI: 10.1039/d4cp04270k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The discovery that ATP can prevent the aggregation of proteins and enhance their stability sparked significant interest in understanding the interactions between ATP and proteins. All-atom molecular dynamics simulations provide detailed insight into the underlying mechanism, while an appropriate force field must be developed. Existing force fields accurately describe the conformations of polyphosphates, but are not suitable for simulations at high ATP concentrations, because excessive self-aggregation occurs. We address this issue by scaling the atomic charges of the ATP anion and its counterions. The experimentally observed aggregation can be reproduced by using a scaling factor of 0.7 applied to the phosphate moiety of ATP and its counterions. This charge scaling is in line with a physically motivated implicit account of polarization effects, which is increasingly applied in simulations of ionic systems.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany.
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
5
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
6
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Song C, Zheng W, Song C, Zhou H, Yao J. Protective Effects of Food-Derived Kaempferol on Pancreatic β-Cells in Type 1 Diabetes Mellitus. Foods 2024; 13:3797. [PMID: 39682869 DOI: 10.3390/foods13233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Kaempferol (KPF), a flavonoid abundant in edible plants, possesses potent anti-inflammatory and antioxidant properties beneficial with notable health benefits. OBJECTIVE To evaluate the protective effects of KPF on metabolic disturbances and pancreatic damage in a Type 1 diabetes mellitus (T1DM) mouse model. METHODS Male C57BL/6 mice were divided into normal, T1DM, T1DM + KPF 25 mg/kg, and T1DM + KPF 50 mg/kg groups. T1DM was induced by streptozotocin (STZ). KPF was administered via intraperitoneal injection for 2 weeks. After 4 weeks from the start, metabolic parameters, pancreatic histology, and plasma metabolites were analyzed. Network pharmacology and molecular docking identified key targets and pathways. In vitro, INS-1 cells were used to assess reactive oxygen species (ROS) production and apoptosis. RESULTS KPF significantly reduced blood glucose (GLU) and triglyceride (TG) levels, increased high-density lipoprotein (HDL) levels, and preserved pancreatic β-cell structure. Metabolomics revealed changes in energy metabolism and oxidative stress-related metabolites. Network analysis highlighted the PI3K/AKT/mTOR pathway, with strong binding affinities to targets such as AKT1. In vitro, KPF decreased ROS production in INS-1 cells; this effect was reversed by a PI3K/AKT inhibitor. KPF also reduced apoptosis in INS-1 cells. CONCLUSIONS KPF ameliorates metabolic disturbances and pancreatic damage in T1DM mice, suggesting potential as a functional food ingredient for diabetes management.
Collapse
Affiliation(s)
- Chenmeng Song
- School of Public Health, Fujian Medical University, Fuzhou 350005, China
| | - Wei Zheng
- Department of Pharmacy, Xiamen Medical College, Xiamen 361005, China
| | - Chengyi Song
- Department of Pharmacy, Xiamen Medical College, Xiamen 361005, China
| | - Houfeng Zhou
- Department of Clinical Medicine, Xiamen Medical University, Xiamen 361005, China
| | - Jengyuan Yao
- School of Public Health, Fujian Medical University, Fuzhou 350005, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361005, China
| |
Collapse
|
8
|
Kierans SJ, Taylor CT. Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem 2024; 300:107906. [PMID: 39442619 PMCID: PMC11605472 DOI: 10.1016/j.jbc.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Glycolysis is a highly conserved metabolic pathway responsible for the anaerobic production of adenosine triphosphate (ATP) from the breakdown of glucose molecules. While serving as a primary metabolic pathway in prokaryotes, glycolysis is also utilized by respiring eukaryotic cells, providing pyruvate to fuel oxidative metabolism. Furthermore, glycolysis is the primary source of ATP production in multiple cellular states (e.g., hypoxia) and is particularly important in maintaining bioenergetic homeostasis in the most abundant cell type in the human body, the erythrocyte. Beyond its role in ATP production, glycolysis also functions as a signaling hub, producing several metabolic intermediates which serve roles in both signaling and metabolic processes. These signals emanating from the glycolytic pathway can profoundly impact cell function, phenotype, and fate and have previously been overlooked. In this review, we will discuss the role of the glycolytic pathway as a source of signaling molecules in eukaryotic cells, emphasizing the newfound recognition of glycolysis' multifaceted nature and its importance in maintaining cellular homeostasis, beyond its traditional role in ATP synthesis.
Collapse
Affiliation(s)
- Sarah J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Sarkar S, Gupta S, Mahato C, Das D, Mondal J. Elucidating ATP's role as solubilizer of biomolecular aggregate. eLife 2024; 13:RP99150. [PMID: 39475790 PMCID: PMC11524580 DOI: 10.7554/elife.99150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Proteins occurring in significantly high concentrations in cellular environments (over 100 mg/ml) and functioning in crowded cytoplasm, often face the prodigious challenges of aggregation which are the pathological hallmark of aging and are critically responsible for a wide spectrum of rising human diseases. Here, we combine a joint-venture of complementary wet-lab experiment and molecular simulation to discern the potential ability of adenosine triphosphate (ATP) as solubilizer of protein aggregates. We show that ATP prevents both condensation of aggregation-prone intrinsically disordered protein Aβ40 and promotes dissolution of preformed aggregates. Computer simulation links ATP's solubilizing role to its ability to modulate protein's structural plasticity by unwinding protein conformation. We show that ATP is positioned as a superior biological solubilizer of protein aggregates over traditional chemical hydrotropes, potentially holding promises in therapeutic interventions in protein-aggregation-related diseases. Going beyond its conventional activity as energy currency, the amphiphilic nature of ATP enables its protein-specific interaction that would enhance ATP's efficiency in cellular processes.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research HyderabadHyderabadIndia
| | - Saurabh Gupta
- Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Chiranjit Mahato
- Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Dibyendu Das
- Indian Institute of Science Education and Research KolkataKolkataIndia
| | | |
Collapse
|
10
|
Laskowska E, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K. Role of protein aggregates in bacteria. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:73-112. [PMID: 40324851 DOI: 10.1016/bs.apcsb.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation in bacteria, induced by a variety of intrinsic and environmental stresses, have often been associated with proteostasis disruption and toxic effects. However, a growing body of evidence suggests that these aggregates may also serve as functional membrane-less organelles (MLOs), playing a protective role in bacterial cells. The main mechanism responsible for the formation of MLOs is liquid-liquid phase separation (LLPS), a process that transforms a homogenous solution of macromolecules into dense condensates (liquid droplets) and a diluted phase. Over time, these liquid droplets can be transformed into solid aggregates. Bacterial MLOs, containing one dominant component or hundreds of cytoplasmic proteins, have been shown to be involved in various processes, including replication, transcription, cell division, and stress tolerance. The protective function of bacterial MLOs involves sequestration and protection of proteins and RNA from irreversible inactivation or degradation, upregulation of molecular chaperones, and induction of a dormant state. This protective role is particularly significant in the case of pathogenic bacteria exposed to antibiotic therapy. In a dormant state triggered by protein aggregation, pathogens can survive antibiotic therapy as persisters and, after resuming growth, can cause recurrent infections. Recent research has explored the potential use of bacterial MLOs as nanoreactors that catalyze biochemical reactions or serve as protein reservoirs and biosensors, highlighting their potential in biotechnology.
Collapse
Affiliation(s)
- Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
11
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
13
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
14
|
Barboza Bispo R, Teixeira do Amaral A, Pinto VB, de Oliveira Santos T, Jário de Lima V, Rohem Simão B, Fischer A, Naldrett MJ, Alvarez S. Unraveling the Mechanisms of Efficient Phosphorus Utilization in Popcorn ( Zea mays L. var. everta): Insights from Proteomic and Metabolite Analysis. J Proteome Res 2024; 23:3108-3123. [PMID: 38648199 PMCID: PMC11302424 DOI: 10.1021/acs.jproteome.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.
Collapse
Affiliation(s)
- Rosimeire Barboza Bispo
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Antônio Teixeira do Amaral
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório
de Biologia Celular e Tecidual (LBCT), UENF,
Centro de Biociências e Biotecnologia (CBB), 28.013-602, Campos dos Goytacazes, RJ, Brazil
| | - Talles de Oliveira Santos
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Valter Jário de Lima
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Bruna Rohem Simão
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Anne Fischer
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| | - Michael J. Naldrett
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| | - Sophie Alvarez
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
16
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
17
|
Do TM, Horinek D, Matubayasi N. How ATP suppresses the fibrillation of amyloid peptides: analysis of the free-energy contributions. Phys Chem Chem Phys 2024; 26:11880-11892. [PMID: 38568008 DOI: 10.1039/d4cp00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| |
Collapse
|
18
|
Zheng H, Liang G, Guan C, Liu L, Dong J, Zhao J, Tang M, Kong L. Mitochondrial Fission in Nickel Nanoparticle-Induced Reproductive Toxicity: An In Vitro GC-1 Cell Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:689. [PMID: 38668183 PMCID: PMC11054017 DOI: 10.3390/nano14080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.
Collapse
Affiliation(s)
- Hanyue Zheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Chunliu Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Lin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Jiahui Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA;
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| |
Collapse
|
19
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
21
|
Foressi NN, Rodríguez LC, Celej MS. Heterotypic liquid-liquid phase separation of tau and α-synuclein: Implications for overlapping neuropathologies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140950. [PMID: 37574035 DOI: 10.1016/j.bbapap.2023.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Tauopathies and synucleinopathies are characterized by the aggregation of Tau and α-synuclein (AS) into amyloid structures, respectively. Individuals with these neuropathies have an elevated risk of developing subsequent neurodegenerative or comorbid disorders. Intriguingly, post-mortem brain examinations have revealed co-localization of Tau and AS aggregates, suggesting a synergistic pathological relationship with an adverse prognosis. The role of liquid-liquid phase separation (LLPS) in the development of neurodegenerative diseases is currently receiving significant attention, as it can contribute to the aggregation and co-deposition of amyloidogenic proteins. In this study, we investigated the phase separation behavior of Tau and AS under various insults, some of which are implicated in disease progression. Our findings demonstrate the formation of heterotypic droplets composed of Tau and AS at physiologically relevant mole ratios that mimic neurons' soma and terminal buttons. Importantly, these heterotypic droplets exhibit increased resistance to electrostatic screening compared to homotypic condensates. Moreover, we observed that biologically relevant biomolecules, known to be dysregulated in disease, exert different effects on these droplets. Additionally, we provide evidence that phase separation itself influences the amyloid aggregation of Tau and AS, underscoring the significance of this process in the development of aggregopathies.
Collapse
Affiliation(s)
- Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
22
|
Hautke A, Ebbinghaus S. The emerging role of ATP as a cosolute for biomolecular processes. Biol Chem 2023; 404:897-908. [PMID: 37656203 DOI: 10.1515/hsz-2023-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Hautke
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
23
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
24
|
Paoletti F, Covaceuszach S, Cassetta A, Calabrese AN, Novak U, Konarev P, Grdadolnik J, Lamba D, Golič Grdadolnik S. Distinct conformational changes occur within the intrinsically unstructured pro-domain of pro-Nerve Growth Factor in the presence of ATP and Mg 2. Protein Sci 2023; 32:e4563. [PMID: 36605018 PMCID: PMC9878617 DOI: 10.1002/pro.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | | | - Alberto Cassetta
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Urban Novak
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Petr Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
- Interuniversity Consortium “Biostructures and Biosystems National Institute”RomeItaly
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| |
Collapse
|
25
|
Dang M, Li T, Song J. ATP and nucleic acids competitively modulate LLPS of the SARS-CoV2 nucleocapsid protein. Commun Biol 2023; 6:80. [PMID: 36681763 PMCID: PMC9862227 DOI: 10.1038/s42003-023-04480-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Tongyang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
26
|
Zalar M, Bye J, Curtis R. Nonspecific Binding of Adenosine Tripolyphosphate and Tripolyphosphate Modulates the Phase Behavior of Lysozyme. J Am Chem Soc 2023; 145:929-943. [PMID: 36608272 PMCID: PMC9853864 DOI: 10.1021/jacs.2c09615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adenosine tripolyphosphate (ATP) is a small polyvalent anion that has recently been shown to interact with proteins and have a major impact on assembly processes involved in biomolecular condensate formation and protein aggregation. However, the nature of non-specific protein-ATP interactions and their effects on protein solubility are largely unknown. Here, the binding of ATP to the globular model protein is characterized in detail using X-ray crystallography and nuclear magnetic resonance (NMR). Using NMR, we identified six ATP binding sites on the lysozyme surface, with one known high-affinity nucleic acid binding site and five non-specific previously unknown sites with millimolar affinities that also bind tripolyphosphate (TPP). ATP binding occurs primarily through the polyphosphate moiety, which was confirmed by the X-ray structure of the lysozyme-ATP complex. Importantly, ATP binds preferentially to arginine over lysine in non-specific binding sites. ATP and TPP have similar effects on solution-phase protein-protein interactions. At low salt concentrations, ion binding to lysozyme causes precipitation, while at higher salt concentrations, redissolution occurs. The addition of an equimolar concentration of magnesium to ATP does not alter ATP binding affinities but prevents lysozyme precipitation. These findings have important implications for both protein crystallization and cell biology. Crystallization occurs readily in ATP solutions outside the well-established crystallization window. In the context of cell biology, the findings suggest that ATP binds non-specifically to folded proteins in physiological conditions. Based on the nature of the binding sites identified by NMR, we propose several mechanisms for how ATP binding can prevent the aggregation of natively folded proteins.
Collapse
|
27
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
28
|
Liu S, Li C, Yan W, Jin S, Wang K, Wang C, Gong H, Wu H, Fu X, Deng L, Lei C, He M, Wang H, Cheng Y, Wang Q, Lin S, Huang Y, Li D, Yang X. Using Blood Transcriptome Analysis to Determine the Changes in Immunity and Metabolism of Giant Pandas with Age. Vet Sci 2022; 9:vetsci9120667. [PMID: 36548828 PMCID: PMC9784451 DOI: 10.3390/vetsci9120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A low reproductive rate coupled with human activities has endangered the giant panda, a species endemic to southwest China. Although giant pandas feed almost exclusively on bamboo, they retain carnivorous traits and suffer from carnivorous diseases. Additionally, their immune system is susceptible to aging, resulting in a reduced ability to respond to diseases. This study aimed to determine the genes and pathways expressed differentially with age in blood tissues. The differentially expressed genes in different age groups of giant pandas were identified by RNA-seq. The elderly giant pandas had many differentially expressed genes compared with the young group (3 years old), including 548 upregulated genes and 401 downregulated genes. Further, functional enrichment revealed that innate immune upregulation and adaptive immune downregulation were observed in the elderly giant pandas compared with the young giant pandas. Meanwhile, the immune genes in the elderly giant pandas changed considerably, including genes involved in innate immunity and adaptive immunity such as PLSCR1, CLEC7A, CCL5, CCR9, and EPAS1. Time series analysis found that giant pandas store glycogen by prioritizing fat metabolism at age 11, verifying changes in the immune system. The results reported in this study will provide a foundation for further research on disease prevention and the energy metabolism of giant pandas.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Caiwu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Senlong Jin
- Sichuan Wolong National Nature Reserve Administration, Wenchuan 623006, China
| | - Kailu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Huiling Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Xue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
| | - Yanxi Cheng
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Qian Wang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Shanshan Lin
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Chengdu 610083, China
- Correspondence: (D.L.); (X.Y.)
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610017, China
- Correspondence: (D.L.); (X.Y.)
| |
Collapse
|
29
|
Ya. Zakharova L, Vasilieva EA, Mirgorodskaya AB, Zakharov SV, Pavlov RV, Kashapova NE, Gaynanova GA. Hydrotropes: solubilization of nonpolar compounds and modification of surfactant solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
30
|
Rickard MM, Luo H, De Lio A, Gruebele M, Pogorelov TV. Impact of the Cellular Environment on Adenosine Triphosphate Conformations. J Phys Chem Lett 2022; 13:9809-9814. [PMID: 36228115 PMCID: PMC10077521 DOI: 10.1021/acs.jpclett.2c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cytoplasm is an environment crowded by macromolecules and filled with metabolites and ions. Recent experimental and computational studies have addressed how this environment affects protein stability, folding kinetics, and protein-protein and protein-nucleic acid interactions, though its impact on metabolites remains largely unknown. Here we show how a simulated cytoplasm affects the conformation of adenosine triphosphate (ATP), a key energy source and regulatory metabolite present at high concentrations in cells. Analysis of our all-atom model of a small volume of the Escherichia coli cytoplasm when contrasted with ATP modeled in vitro or resolved with protein structures deposited in the Protein Data Bank reveals that ATP molecules bound to proteins in cell form specific pitched conformations that are not observed at significant concentrations in the other environments. We hypothesize that these interactions evolved to fulfill functional roles when ATP interacts with protein surfaces.
Collapse
Affiliation(s)
- Meredith M. Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Haolin Luo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ashley De Lio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
31
|
Ren CL, Shan Y, Zhang P, Ding HM, Ma YQ. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. SCIENCE ADVANCES 2022; 8:eabo7885. [PMID: 36103543 PMCID: PMC9473584 DOI: 10.1126/sciadv.abo7885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/04/2023]
Abstract
Recent studies reported that adenosine triphosphate (ATP) could inhibit and enhance the phase separation in prion-like proteins. The molecular mechanism underlying such a puzzling phenomenon remains elusive. Here, taking the fused in sarcoma (FUS) solution as an example, we comprehensively reveal the underlying mechanism by which ATP regulates phase separation by combining the semiempirical quantum mechanical method, mean-field theory, and molecular simulation. At the microscopic level, ATP acts as a bivalent or trivalent binder; at the macroscopic level, the reentrant phase separation occurs in dilute FUS solutions, resulting from the ATP concentration-dependent binding ability under different conditions. The ATP concentration for dissolving the protein condensates is about 10 mM, agreeing with experimental results. Furthermore, from a dynamic point of view, the effect of ATP on phase separation is also nonmonotonic. This work provides a clear physical description of the microscopic interaction and macroscopic phase diagram of the ATP-modulated phase separation.
Collapse
Affiliation(s)
- Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Hu G, Ou X, Li J. Mechanistic Insight on General Protein-Binding Ability of ATP and the Impacts of Arginine Residues. J Phys Chem B 2022; 126:4647-4658. [PMID: 35713479 DOI: 10.1021/acs.jpcb.2c01478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments suggested that adenosine triphosphate (ATP) can regulate liquid-liquid phase separation (LLPS) of various proteins and inhibit protein aggregations at its physiological concentration, which is highly correlated with the nonspecific interactions of ATP to a wide variety of proteins. However, the mechanism underlying the general binding capability of ATP largely remains unclear. In this work, we used molecular dynamics simulation to study the binding of ATPs to three proteins with distinct net charges: TDP-43 NTD (-7 e), TAF15-RRM (0 e), HWEL (+8 e). Negatively charged ATP exhibits a strong trend to accumulate around all of these proteins. While only a fraction of the accumulated ATPs directly binds to the limited regions of the protein surface, additional ATPs indirectly bind to proteins by aggregating into ATP clusters. Hence, the proportion of the directly bound ATPs in the clusters as well as their binding regions can be adjusted in response to different proteins, which makes ATP well adapted to a variety of proteins. Moreover, our results suggest that ATP tightly binds to Arg with high affinity, and Arg dominates the direct binding of ATP. Meanwhile, Arg also affects the self-association of accumulated ATPs. The size of the ATP cluster is effectively regulated by the distribution of Arg. Considering the ubiquity of Arg in proteins, our findings are helpful to understand the general binding capability of ATP.
Collapse
Affiliation(s)
- Guorong Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
33
|
Shi Z, Wang H, Zhang Y, Jia L, Pang H, Feng H, Wang X. The involvement of extracellular ATP in regulating the stunted growth of Arabidopsis plants by repeated wounding. BMC PLANT BIOLOGY 2022; 22:279. [PMID: 35676637 PMCID: PMC9175478 DOI: 10.1186/s12870-022-03656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Extracellular ATP (exATP) has been shown to act as a signal molecule for regulating growth, development, and responses of plants to the external environment. RESULTS In this study, we investigated the possible involvement of exATP in regulating the stunted growth caused by repeated wounding. The present work showed that the repeated wounding caused the decreases in leaf area, fresh weight, dry weight, and root length of Arabidopsis seedlings, while the exATP level was enhanced by the repeated wounding. Repeated application of exogenous ATP had similar effects on the plant growth, as the repeated wounding. Through the comparison of p2k1-3 mutant (in which T-DNA disrupted the gene coding P2K1, as exATP receptor) and wide type (WT) plants, it was found that the mutation in P2K1 decreased the sensitivity of plant growth to the repeated wounding and exogenous ATP application. Further works showed that the ibuprofen (IBU, an inhibitor of jasmonate biosynthesis) partially rescued the wound-induced growth degradation. In comparison, the P2K1 mutation partly rescued the wound-induced growth degradation, whereas this mutation failed to do so in the wounded seedlings treated with IBU, indicating that the role of exATP in regulating the growth degradation by repeated wounding could be linked to the JA signaling pathway. CONCLUSIONS In conclusion, these results indicate that exATP could be a regulator for the stunted growth of plants by repeated wounding.
Collapse
Affiliation(s)
- Zhenzhen Shi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Lingyun Jia
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hailong Pang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Xin Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
34
|
Dang M, Song J. A review of the effects of ATP and hydroxychloroquine on the phase separation of the SARS-CoV-2 nucleocapsid protein. Biophys Rev 2022; 14:709-715. [PMID: 35756710 PMCID: PMC9214679 DOI: 10.1007/s12551-022-00957-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is the coronavirus causing the ongoing pandemic with > 460 millions of infections and > 6 millions of deaths. SARS-CoV-2 nucleocapsid (N) is the only structural protein which plays essential roles in almost all key steps of the viral life cycle with its diverse functions depending on liquid-liquid phase separation (LLPS) driven by interacting with various nucleic acids. The 419-residue N protein is highly conserved in all variants including delta and omicron, and composed of both folded N-/C-terminal domains (NTD/CTD) as well as three long intrinsically disordered regions (IDRs). Recent results have suggested that its CTD and IDRs are also cryptic nucleic acid-binding domains. In this context, any small molecules capable of interfering in its interaction with nucleic acids are anticipated to modulate its LLPS and associated functions. Indeed, ATP, the energy currency existing at very high concentrations (2-12 mM) in all living cells but absent in viruses, modulates LLPS of N protein, and consequently appears to be evolutionarily hijacked by SARS-CoV-2 to promote its life cycle. Hydroxychloroquine (HCQ) has been also shown to specifically bind NTD and CTD to inhibit their interactions with nucleic acids, as well as to disrupt LLPS. Particularly, the unique structure of the HCQ-CTD complex offers a promising strategy for further design of anti-SARS-CoV-2 drugs with better affinity and specificity. The finding may indicate that LLPS is indeed druggable by small molecules, thus opening up a promising direction for drug discovery/design by targeting LLPS in general.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore; 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore; 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| |
Collapse
|
35
|
Zananiri R, Mangapuram Venkata S, Gaydar V, Yahalom D, Malik O, Rudnizky S, Kleifeld O, Kaplan A, Henn A. Auxiliary ATP binding sites support DNA unwinding by RecBCD. Nat Commun 2022; 13:1806. [PMID: 35379800 PMCID: PMC8980037 DOI: 10.1038/s41467-022-29387-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2022] [Indexed: 12/22/2022] Open
Abstract
The RecBCD helicase initiates double-stranded break repair in bacteria by processively unwinding DNA with a rate approaching ∼1,600 bp·s−1, but the mechanism enabling such a fast rate is unknown. Employing a wide range of methodologies — including equilibrium and time-resolved binding experiments, ensemble and single-molecule unwinding assays, and crosslinking followed by mass spectrometry — we reveal the existence of auxiliary binding sites in the RecC subunit, where ATP binds with lower affinity and distinct chemical interactions as compared to the known catalytic sites. The essentiality and functionality of these sites are demonstrated by their impact on the survival of E.coli after exposure to damage-inducing radiation. We propose a model by which RecBCD achieves its optimized unwinding rate, even when ATP is scarce, by using the auxiliary binding sites to increase the flux of ATP to its catalytic sites. RecBCD is a remarkably fast DNA helicase. Using a battery of biophysical methods, Zananiri et. al reveal additional, non-catalytic ATP binding sites that increase the ATP flux to the catalytic sites that allows fast unwinding when ATP is scarce.
Collapse
|
36
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
37
|
Structural basis of anti-SARS-CoV-2 activity of HCQ: specific binding to N protein to disrupt its interaction with nucleic acids and LLPS. QRB DISCOVERY 2021. [PMID: 37529681 PMCID: PMC10392676 DOI: 10.1017/qrd.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
SARS-CoV-2 nucleocapsid (N) protein plays the essential roles in key steps of the viral life cycle, thus representing a top drug target. Functionality of N protein including liquid–liquid phase separation (LLPS) depends on its interaction with nucleic acids. Only the variants with N proteins functional in binding nucleic acids might survive and spread in evolution and indeed, the residues critical for binding nucleic acids are highly conserved. Hydroxychloroquine (HCQ) was shown to prevent the transmission in a large-scale clinical study in Singapore but so far, no specific SARS-CoV-2 protein was experimentally identified to be targeted by HCQ. Here by NMR, we unambiguously decode that HCQ specifically binds NTD and CTD of N protein with Kd of 112.1 and 57.1 μM, respectively to inhibit their interaction with nucleic acid, as well as to disrupt LLPS. Most importantly, HCQ-binding residues are identical in SARS-CoV-2 variants and therefore HCQ is likely effective to different variants. The results not only provide a structural basis for the anti-SARS-CoV-2 activity of HCQ, but also renders HCQ to be the first known drug capable of targeting LLPS. Furthermore, the unique structure of the HCQ-CTD complex suggests a promising strategy for design of better anti-SARS-CoV-2 drugs from HCQ.
Collapse
|
38
|
ATP and Tri-Polyphosphate (TPP) Suppress Protein Aggregate Growth by a Supercharging Mechanism. Biomedicines 2021; 9:biomedicines9111646. [PMID: 34829875 PMCID: PMC8616003 DOI: 10.3390/biomedicines9111646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
A common strategy to increase aggregation resistance is through rational mutagenesis to supercharge proteins, which leads to high colloidal stability, but often has the undesirable effect of lowering conformational stability. We show this trade-off can be overcome by using small multivalent polyphosphate ions, adenosine triphosphate (ATP) and tripolyphosphate (TPP) as excipients. These ions are equally effective at suppressing aggregation of ovalbumin and bovine serum albumin (BSA) upon thermal stress as monitored by dynamic and static light scattering. Monomer loss kinetic studies, combined with measurements of native state protein–protein interactions and ζ-potentials, indicate the ions reduce aggregate growth by increasing the protein colloidal stability through binding and overcharging the protein. Out of three additional proteins studied, ribonuclease A (RNaseA), α-chymotrypsinogen (α-Cgn), and lysozyme, we only observed a reduction in aggregate growth for RNaseA, although overcharging by the poly-phosphate ions still occurs for lysozyme and α-Cgn. Because the salts do not alter protein conformational stability, using them as excipients could be a promising strategy for stabilizing biopharmaceuticals once the protein structural factors that determine whether multivalent ion binding will increase colloidal stability are better elucidated. Our findings also have biological implications. Recently, it has been proposed that ATP also plays an important role in maintaining intracellular biological condensates and preventing protein aggregation in densely packed cellular environments. We expect electrostatic interactions are a significant factor in determining the stabilizing ability of ATP towards maintaining proteins in non-dispersed states in vivo.
Collapse
|
39
|
Dang M, Song J. CTD of SARS-CoV-2 N protein is a cryptic domain for binding ATP and nucleic acid that interplay in modulating phase separation. Protein Sci 2021; 31:345-356. [PMID: 34734665 PMCID: PMC8661809 DOI: 10.1002/pro.4221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 nucleocapsid (N) protein plays essential roles in many steps of the viral life cycle, thus representing a key drug target. N protein contains the folded N-/C-terminal domains (NTD/CTD) and three intrinsically disordered regions, while its functions including liquid-liquid phase separation (LLPS) depend on the capacity in binding various viral/host-cell RNA/DNA of diverse sequences. Previously NTD was established to bind various RNA/DNA while CTD to dimerize/oligomerize for forming high-order structures. By NMR, here for the first time we decrypt that CTD is not only capable of binding S2m, a specific probe derived from SARS-CoV-2 gRNA but with the affinity even higher than that of NTD. Very unexpectedly, ATP, the universal energy currency for all living cells with high cellular concentrations (2-16 mM), specifically binds CTD with Kd of 1.49 ± 0.28 mM. Strikingly, the ATP-binding residues of NTD/CTD are identical in the SARS-CoV-2 variants while ATP and S2m interplay in binding NTD/CTD, as well as in modulating LLPS critical for the viral life cycle. Results together not only define CTD as a novel binding domain for ATP and nucleic acid, but enforce our previous proposal that ATP has been evolutionarily exploited by SARS-CoV-2 to complete its life cycle in the host cell. Most importantly, the unique ATP-binding pockets on NTD/CTD may offer promising targets for design of specific anti-SARS-CoV-2 molecules to fight the pandemic. Fundamentally, ATP emerges to act at mM as a cellular factor to control the interface between the host cell and virus lacking the ability to generate ATP.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
40
|
Chu XY, Wang G, Zhang HY. ATP as an anti-aging agent: Beyond the energy reservoir. Drug Discov Today 2021; 26:2783-2785. [PMID: 34634478 DOI: 10.1016/j.drudis.2021.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Gang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
41
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
42
|
Song J. Adenosine triphosphate energy-independently controls protein homeostasis with unique structure and diverse mechanisms. Protein Sci 2021; 30:1277-1293. [PMID: 33829608 PMCID: PMC8197423 DOI: 10.1002/pro.4079] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2-12 mM, much higher than required for its previously-known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic-acid-binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding-induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π-π, π-cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy-independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein-aggregation diseases.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|