1
|
Zhou Q, Sagmeister T, Hutten S, Bourgeois B, Pavkov-Keller T, Dormann D, Madl T. Structural basis of phosphorylation-independent nuclear import of CIRBP by TNPO3. Nat Commun 2025; 16:4456. [PMID: 40360518 PMCID: PMC12075686 DOI: 10.1038/s41467-025-59802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Transportin 3 (TNPO3) is a nuclear import receptor known for its broad substrate specificity, often recognizing arginine-serine (SR/RS) repeat-rich nuclear localization signals (NLS) in SRSF proteins. While serine phosphorylation or glutamate presence has been associated with these NLSs, recent proteomic studies identified TNPO3 cargoes lacking SR/RS repeats. One such example is the cold-inducible RNA-binding protein (CIRBP), which contains a non-classical RSY-NLS. Using X-ray crystallography, here we investigate the TNPO3-CIRBP interaction and find that tyrosines within the RSY-NLS play a key role in binding, independent of phosphorylation. Surprisingly, serine and tyrosine phosphorylation in CIRBP's NLS inhibits TNPO3 binding, suggesting a regulatory mechanism for nuclear import. Our study reveals a non-conventional nuclear import mechanism mediated by TNPO3, which may extend to other known or yet undiscovered TNPO3 cargoes.
Collapse
Affiliation(s)
- Qishun Zhou
- Research Unit Integrative Structural Biology, Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Saskia Hutten
- Johannes Gutenberg Universität Mainz, Institute of Molecular Physiology, Mainz, Germany
| | - Benjamin Bourgeois
- Research Unit Integrative Structural Biology, Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dorothee Dormann
- Johannes Gutenberg Universität Mainz, Institute of Molecular Physiology, Mainz, Germany
- Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
2
|
Hornisch M, Piazza I. Regulation of gene expression through protein-metabolite interactions. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:7. [PMID: 40052108 PMCID: PMC11879850 DOI: 10.1038/s44324-024-00047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Organisms have to adapt to changes in their environment. Cellular adaptation requires sensing, signalling and ultimately the activation of cellular programs. Metabolites are environmental signals that are sensed by proteins, such as metabolic enzymes, protein kinases and nuclear receptors. Recent studies have discovered novel metabolite sensors that function as gene regulatory proteins such as chromatin associated factors or RNA binding proteins. Due to their function in regulating gene expression, metabolite-induced allosteric control of these proteins facilitates a crosstalk between metabolism and gene expression. Here we discuss the direct control of gene regulatory processes by metabolites and recent progresses that expand our abilities to systematically characterize metabolite-protein interaction networks. Obtaining a profound map of such networks is of great interest for aiding metabolic disease treatment and drug target identification.
Collapse
Affiliation(s)
- Maximilian Hornisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 171 65 Sweden
| |
Collapse
|
3
|
Lin YH, Kim TH, Das S, Pal T, Wessén J, Rangadurai AK, Kay LE, Forman-Kay JD, Chan HS. Electrostatics of salt-dependent reentrant phase behaviors highlights diverse roles of ATP in biomolecular condensates. eLife 2025; 13:RP100284. [PMID: 40028898 PMCID: PMC11875540 DOI: 10.7554/elife.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP's involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Tae Hun Kim
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Suman Das
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Chemistry, Gandhi Institute of Technology and ManagementVisakhapatnamIndia
| | - Tanmoy Pal
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jonas Wessén
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Lewis E Kay
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Hue Sun Chan
- Department of Biochemistry, University of TorontoTorontoCanada
| |
Collapse
|
4
|
Roy R, Sanyal D, Roychowdhury S, Chattopadhyay K. Studies of Protein Phase Separation Using Leishmania Kinetoplastid Membrane Protein-11. J Phys Chem B 2025; 129:814-824. [PMID: 39439298 DOI: 10.1021/acs.jpcb.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the significant understanding of phase separation in proteins with intrinsically disordered regions, a considerable percentage of proteins without such regions also undergo phase separation, presenting an intriguing area for ongoing research across all kingdoms of life. Using a combination of spectroscopic and microscopic techniques, we report here for the first time that a low temperature and low pH can trigger the liquid-liquid phase separation (LLPS) of a parasitic protein, kinetoplastid membrane protein-11 (KMP-11). Electrostatic and hydrophobic forces are found to be essential for the formation and stability of phase-separated protein assemblies. We show further that the increase in the ionic strength beyond a threshold decreases the interchain electrostatic interactions acting between the alternate charged blocks, altering the propensity for phase separation. More interestingly, the addition of cholesterol inhibits LLPS by engaging the cholesterol recognition amino acid consensus (CRAC)-like domains present in the protein. This was further confirmed using a CRAC-deleted mutant with perturbed cholesterol binding, which did not undergo LLPS.
Collapse
Affiliation(s)
- Rajdip Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Dwipanjan Sanyal
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Sumangal Roychowdhury
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
5
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
6
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
7
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. Nat Commun 2024; 15:7686. [PMID: 39227569 PMCID: PMC11372141 DOI: 10.1038/s41467-024-51840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
9
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
10
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.03.547532. [PMID: 37461689 PMCID: PMC10350024 DOI: 10.1101/2023.07.03.547532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
11
|
Corre M, Lebreton A. Regulation of cold-inducible RNA-binding protein (CIRBP) in response to cellular stresses. Biochimie 2024; 217:3-9. [PMID: 37037339 DOI: 10.1016/j.biochi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Cold-inducible RNA-Binding Protein (CIRBP) is a general stress-response factor in vertebrates harboring two domains: an RNA-recognition motif and a regulatory domain rich in RG/RGG motifs. CIRBP has been described to bind mRNAs upon various stress conditions (cold, infections, UV, hypoxia …) and regulate their stability and translation. The proteins encoded by its targets are involved in key stress-responsive cellular pathways including apoptosis, inflammation, cell proliferation or translation, thus allowing their coordination. Due to its role in regulating central cellular functions, the expression of CIRBP is tightly controlled. We review here current understanding of the multiple mechanistic layers affecting CIRBP expression and function. Beyond transcriptional regulation by cold-responsive elements and the use of alternative promoters and transcription start sites, CIRBP undergoes various alternative splicing (AS) events which, depending on conditions, modulate the stability of CIRBP transcripts and/or impact the sequence of the encoded polypeptide. Typically, whilst CIRBP expression is induced in the context of hypothermia or viral infection, AS events preferentially address alternative isoforms towards mRNA degradation pathways in response to heat stress or to bacterial-secreted pore forming toxins. Post-translational modifications of CIRBP, mostly in its RGG domain, also condition CIRBP subcellular localization and access to its targets, thereby promoting or inhibiting their expression. For instance, phosphorylation and methylation events gate CIRBP nuclear to cytoplasmic translocation and control its recruitment to stress granules. Considering the therapeutic potential of modulating the expression and function of this central player in stress responses, a fine understanding of CIRBP regulation mechanisms deserves further attention.
Collapse
Affiliation(s)
- Morgane Corre
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Alice Lebreton
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France; INRAE, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Kota D, Prasad R, Zhou HX. Adenosine Triphosphate Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. J Am Chem Soc 2024; 146:1326-1336. [PMID: 38174879 PMCID: PMC10843746 DOI: 10.1021/jacs.3c09134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Adenosine triphosphate (ATP) is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients up to 7700) and serves as bridges between bIDP chains. These liquid-like droplets have some of the lowest interfacial tension (∼25 pN/μm) but high zero-shear viscosities (1-15 Pa s) due to the bridged protein networks, and yet their fusion has some of the highest speeds (∼1 μm/ms). The rapid fusion manifests extreme shear thinning, where the apparent viscosity is lower than zero-shear viscosity by over 100-fold, made possible by fast reformation of the ATP bridges. At still higher concentrations, ATP does not dissolve bIDP droplets but results in aggregates and fibrils.
Collapse
Affiliation(s)
- Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
13
|
Hautke A, Ebbinghaus S. The emerging role of ATP as a cosolute for biomolecular processes. Biol Chem 2023; 404:897-908. [PMID: 37656203 DOI: 10.1515/hsz-2023-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Hautke
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
14
|
Kota D, Prasad R, Zhou HX. ATP Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554035. [PMID: 37645809 PMCID: PMC10462115 DOI: 10.1101/2023.08.20.554035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ATP is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients at 200-5000) and serves as bridges between bIDP chains. These liquid-like droplets have some of the lowest interfacial tension (~25 pN/μm) but high zero-shear viscosities (1-15 Pa s) due to the bridged protein networks, and yet their fusion has some of the highest speeds (~1 μm/ms). The rapid fusion manifests extreme shear thinning, where the apparent viscosity is lower than zero-shear viscosity by over 100-fold, made possible by fast reformation of the ATP bridges. At still higher concentrations, ATP does not dissolve bIDP droplets but results in aggregates and fibrils.
Collapse
Affiliation(s)
- Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
15
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. RESEARCH SQUARE 2023:rs.3.rs-3171749. [PMID: 37546778 PMCID: PMC10402192 DOI: 10.21203/rs.3.rs-3171749/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and active transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
16
|
Rodríguez LC, Foressi NN, Celej MS. Modulation of α-synuclein phase separation by biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140885. [PMID: 36481455 DOI: 10.1016/j.bbapap.2022.140885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.
Collapse
Affiliation(s)
- Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
17
|
Dang M, Li T, Song J. ATP and nucleic acids competitively modulate LLPS of the SARS-CoV2 nucleocapsid protein. Commun Biol 2023; 6:80. [PMID: 36681763 PMCID: PMC9862227 DOI: 10.1038/s42003-023-04480-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Tongyang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
18
|
Han J, Zhang Y, Ge P, Dakal TC, Wen H, Tang S, Luo Y, Yang Q, Hua B, Zhang G, Chen H, Xu C. Exosome-derived CIRP: An amplifier of inflammatory diseases. Front Immunol 2023; 14:1066721. [PMID: 36865547 PMCID: PMC9971932 DOI: 10.3389/fimmu.2023.1066721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular stress-response protein and a type of damage-associated molecular pattern (DAMP) that responds to various stress stimulus by altering its expression and mRNA stability. Upon exposure to ultraviolet (UV) light or low temperature, CIRP get translocated from the nucleus to the cytoplasm through methylation modification and stored in stress granules (SG). During exosome biogenesis, which involves formation of endosomes from the cell membrane through endocytosis, CIRP also gets packaged within the endosomes along with DNA, and RNA and other proteins. Subsequently, intraluminal vesicles (ILVs) are formed following the inward budding of the endosomal membrane, turning the endosomes into multi-vesicle bodies (MVBs). Finally, the MVBs fuse with the cell membrane to form exosomes. As a result, CIRP can also be secreted out of cells through the lysosomal pathway as Extracellular CIRP (eCIRP). Extracellular CIRP (eCIRP) is implicated in various conditions, including sepsis, ischemia-reperfusion damage, lung injury, and neuroinflammation, through the release of exosomes. In addition, CIRP interacts with TLR4, TREM-1, and IL-6R, and therefore are involved in triggering immune and inflammatory responses. Accordingly, eCIRP has been studied as potential novel targets for disease therapy. C23 and M3, polypeptides that oppose eCIRP binding to its receptors, are beneficial in numerous inflammatory illnesses. Some natural molecules such as Luteolin and Emodin can also antagonize CIRP, which play roles similar to C23 in inflammatory responses and inhibit macrophage-mediated inflammation. This review aims to provide a better understanding on CIRP translocation and secretion from the nucleus to the extracellular space and the mechanisms and inhibitory roles of eCIRP in diverse inflammatory illnesses.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shuangfeng Tang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bianca Hua
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| |
Collapse
|
19
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
20
|
Hu G, Ou X, Li J. Mechanistic Insight on General Protein-Binding Ability of ATP and the Impacts of Arginine Residues. J Phys Chem B 2022; 126:4647-4658. [PMID: 35713479 DOI: 10.1021/acs.jpcb.2c01478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments suggested that adenosine triphosphate (ATP) can regulate liquid-liquid phase separation (LLPS) of various proteins and inhibit protein aggregations at its physiological concentration, which is highly correlated with the nonspecific interactions of ATP to a wide variety of proteins. However, the mechanism underlying the general binding capability of ATP largely remains unclear. In this work, we used molecular dynamics simulation to study the binding of ATPs to three proteins with distinct net charges: TDP-43 NTD (-7 e), TAF15-RRM (0 e), HWEL (+8 e). Negatively charged ATP exhibits a strong trend to accumulate around all of these proteins. While only a fraction of the accumulated ATPs directly binds to the limited regions of the protein surface, additional ATPs indirectly bind to proteins by aggregating into ATP clusters. Hence, the proportion of the directly bound ATPs in the clusters as well as their binding regions can be adjusted in response to different proteins, which makes ATP well adapted to a variety of proteins. Moreover, our results suggest that ATP tightly binds to Arg with high affinity, and Arg dominates the direct binding of ATP. Meanwhile, Arg also affects the self-association of accumulated ATPs. The size of the ATP cluster is effectively regulated by the distribution of Arg. Considering the ubiquity of Arg in proteins, our findings are helpful to understand the general binding capability of ATP.
Collapse
Affiliation(s)
- Guorong Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
21
|
Lenard AJ, Zhou Q, Madreiter-Sokolowski C, Bourgeois B, Habacher H, Khanna Y, Madl T. EGCG Promotes FUS Condensate Formation in a Methylation-Dependent Manner. Cells 2022; 11:592. [PMID: 35203243 PMCID: PMC8870583 DOI: 10.3390/cells11040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people worldwide are affected by neurodegenerative diseases (NDs), and to date, no effective treatment has been reported. The hallmark of these diseases is the formation of pathological aggregates and fibrils in neural cells. Many studies have reported that catechins, polyphenolic compounds found in a variety of plants, can directly interact with amyloidogenic proteins, prevent the formation of toxic aggregates, and in turn play neuroprotective roles. Besides harboring amyloidogenic domains, several proteins involved in NDs possess arginine-glycine/arginine-glycine-glycine (RG/RGG) regions that contribute to the formation of protein condensates. Here, we aimed to assess whether epigallocatechin gallate (EGCG) can play a role in neuroprotection via direct interaction with such RG/RGG regions. We show that EGCG directly binds to the RG/RGG region of fused in sarcoma (FUS) and that arginine methylation enhances this interaction. Unexpectedly, we found that low micromolar amounts of EGCG were sufficient to restore RNA-dependent condensate formation of methylated FUS, whereas, in the absence of EGCG, no phase separation could be observed. Our data provide new mechanistic roles of EGCG in the regulation of phase separation of RG/RGG-containing proteins, which will promote understanding of the intricate function of EGCG in cells.
Collapse
Affiliation(s)
- Aneta J. Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Corina Madreiter-Sokolowski
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Hermann Habacher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Yukti Khanna
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (A.J.L.); (Q.Z.); (C.M.-S.); (B.B.); (H.H.); (Y.K.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
22
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Dang M, Song J. CTD of SARS-CoV-2 N protein is a cryptic domain for binding ATP and nucleic acid that interplay in modulating phase separation. Protein Sci 2021; 31:345-356. [PMID: 34734665 PMCID: PMC8661809 DOI: 10.1002/pro.4221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 nucleocapsid (N) protein plays essential roles in many steps of the viral life cycle, thus representing a key drug target. N protein contains the folded N-/C-terminal domains (NTD/CTD) and three intrinsically disordered regions, while its functions including liquid-liquid phase separation (LLPS) depend on the capacity in binding various viral/host-cell RNA/DNA of diverse sequences. Previously NTD was established to bind various RNA/DNA while CTD to dimerize/oligomerize for forming high-order structures. By NMR, here for the first time we decrypt that CTD is not only capable of binding S2m, a specific probe derived from SARS-CoV-2 gRNA but with the affinity even higher than that of NTD. Very unexpectedly, ATP, the universal energy currency for all living cells with high cellular concentrations (2-16 mM), specifically binds CTD with Kd of 1.49 ± 0.28 mM. Strikingly, the ATP-binding residues of NTD/CTD are identical in the SARS-CoV-2 variants while ATP and S2m interplay in binding NTD/CTD, as well as in modulating LLPS critical for the viral life cycle. Results together not only define CTD as a novel binding domain for ATP and nucleic acid, but enforce our previous proposal that ATP has been evolutionarily exploited by SARS-CoV-2 to complete its life cycle in the host cell. Most importantly, the unique ATP-binding pockets on NTD/CTD may offer promising targets for design of specific anti-SARS-CoV-2 molecules to fight the pandemic. Fundamentally, ATP emerges to act at mM as a cellular factor to control the interface between the host cell and virus lacking the ability to generate ATP.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
24
|
Abstract
Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid–liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.
Collapse
|
25
|
Zhou Q, Usluer S, Zhang F, Lenard AJ, Bourgeois BMR, Madl T. ATP regulates RNA-driven cold inducible RNA binding protein phase separation. Protein Sci 2021; 30:1438-1453. [PMID: 33991007 PMCID: PMC8197425 DOI: 10.1002/pro.4123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered proteins and proteins containing intrinsically disordered regions are highly abundant in the proteome of eukaryotes and are extensively involved in essential biological functions. More recently, their role in the organization of biomolecular condensates has become evident and along with their misregulation in several neurologic disorders. Currently, most studies involving these proteins are carried out in vitro and using purified proteins. Given that in cells, condensate‐forming proteins are exposed to high, millimolar concentrations of cellular metabolites, we aimed to reveal the interactions of cellular metabolites and a representative condensate‐forming protein. Here, using the arginine–glycine/arginine–glycine–glycine (RG/RGG)‐rich cold inducible RNA binding protein (CIRBP) as paradigm, we studied binding of the cellular metabolome to CIRBP. We found that most of the highly abundant cellular metabolites, except nucleotides, do not directly bind to CIRBP. ATP, ADP, and AMP as well as NAD+, NADH, NADP+, and NADPH directly interact with CIRBP, involving both the folded RNA‐recognition motif and the disordered RG/RGG region. ATP binding inhibited RNA‐driven phase separation of CIRBP. Thus, it might be beneficial to include cellular metabolites in in vitro liquid–liquid phase separation studies of RG/RGG and other condensate‐forming proteins in order to better mimic the cellular environment in the future.
Collapse
Affiliation(s)
- Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M R Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|