1
|
Reed PMM, Jang J, Woloschuk RM, Reis J, Hille JIC, Uppalapati M, Woolley GA. Effects of binding partners on thermal reversion rates of photoswitchable molecules. Proc Natl Acad Sci U S A 2025; 122:e2414748122. [PMID: 40035753 PMCID: PMC11912449 DOI: 10.1073/pnas.2414748122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
The binding of photoswitchable molecules to partners forms the basis of many naturally occurring light-dependent signaling pathways and various photopharmacological and optogenetic tools. A critical parameter affecting the function of these molecules is the thermal half-life of the light state. Reports in the literature indicate that, in some cases, a binding partner can significantly influence the thermal half-life, while in other cases it has no effect. Here, we present a unifying framework for quantitatively analyzing the effects of binding partners on thermal reversion rates. We focus on photoswitchable protein/binder interactions involving LOV domains, photoactive yellow protein, and CBCR GAF domains with partners that bind either the light or the dark state of the photoswitchable domain. We show that the effect of a binding partner depends on the extent to which the transition state for reversion resembles the dark state or the light state. We quantify this resemblance with a ϕswitching value, where ϕswitching = 1 if the conformation of the part of the photoswitchable molecule that interacts with the binding partner closely resembles its dark state conformation and ϕswitching = 0 if it resembles its light state. In addition to providing information on the transition state for switching, this analysis can guide the design of photoswitchable systems that retain useful thermal half-lives in practice. The analysis also provides a basis for the use of simple kinetic measurements to determine effective changes in affinity even in complex milieu.
Collapse
Affiliation(s)
| | - Jaewan Jang
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Ryan M. Woloschuk
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Jakeb Reis
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | | | - Maruti Uppalapati
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SKS7N 5E5, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| |
Collapse
|
2
|
Khaleel ZH, No YH, Kim NH, Bae DH, Wu Y, Kim S, Choi H, Lee DE, Jeong SY, Ko YJ, Kim SG, Suh M, Kim JC, DeGrado WF, Kim KH, Kim YH. Design of a light and Ca 2+ switchable organic-peptide hybrid. Proc Natl Acad Sci U S A 2025; 122:e2411316122. [PMID: 39883844 PMCID: PMC11804555 DOI: 10.1073/pnas.2411316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca2+-binding organic-peptide hybrid. The designed molecule, designated Ca2+-binding switch (CaBS), combines an EF-hand motif from classical Ca2+-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light. The MC/SP group acts both as a photoswitch as well as an optical sensor of Ca2+ binding. Photoconversion of the SP to the corresponding MC unmasks an acidic phenol, which CaBS uses as an integral part of both its Ca2+-binding site as well as its tertiary and quaternary structure. By design, the SP state of CaBS is monomeric, while the Ca2+-bound form of the MC state is an obligate dimer, with two Ca2+-binding sites formed at the interface of a domain-swapped dimer. Thus, light and Ca2+ were expected to serve as an "AND gate" that powers a change in backbone structure/dynamics, oligomerization state, and fluorescence properties of the designed molecule. CaBS was designed using Rosetta and molecular dynamics simulations, and experimentally characterized by nuclear magnetic resonance, isothermal titration calorimetry, and optical titrations. These data illustrate the potential of combining small molecule engineering with de novo protein design to develop sensors whose conformation, association state, and optical properties respond to multiple environmental cues.
Collapse
Affiliation(s)
- Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Do Hyun Bae
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yibing Wu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities, Seoul National University, Seoul08826, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- IMNEWRUN Inc., Suwon16419, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung25451, Republic of Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, University of Science and Technology, Seoul02792, Republic of Korea
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- IMNEWRUN Inc., Suwon16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
3
|
Westberg M, Song D, Duong V, Fernandez D, Huang PS, Lin MZ. Photoswitchable binders enable temporal dissection of endogenous protein function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557687. [PMID: 37745504 PMCID: PMC10515898 DOI: 10.1101/2023.09.14.557687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
General methods for spatiotemporal control of specific endogenous proteins would be broadly useful for probing protein function in living cells. Synthetic protein binders that bind and inhibit endogenous protein targets can be obtained from nanobodies, designed ankyrin repeat proteins (DARPins), and other small protein scaffolds, but generalizable methods to control their binding activity are lacking. Here, we report robust single-chain photoswitchable DARPins (psDARPins) for bidirectional optical control of endogenous proteins. We created topological variants of the DARPin scaffold by computer-aided design so fusion of photodissociable dimeric Dronpa (pdDronpa) results in occlusion of target binding at baseline. Cyan light induces pdDronpa dissociation to expose the binding surface (paratope), while violet light restores pdDronpa dimerization and paratope caging. Since the DARPin redesign leaves the paratope intact, the approach was easily applied to existing DARPins for GFP, ERK, and Ras, as demonstrated by relocalizing GFP-family proteins and inhibiting endogenous ERK and Ras with optical control. Finally, a Ras-targeted psDARPin was used to determine that, following EGF-activation of EGFR, Ras is required for sustained EGFR to ERK signaling. In summary, psDARPins provide a generalizable strategy for precise spatiotemporal dissection of endogenous protein function.
Collapse
|
4
|
Sekhon H, Ha JH, Loh SN. Enhancing response of a protein conformational switch by using two disordered ligand binding domains. Front Mol Biosci 2023; 10:1114756. [PMID: 36936990 PMCID: PMC10018487 DOI: 10.3389/fmolb.2023.1114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Protein conformational switches are often constructed by fusing an input domain, which recognizes a target ligand, to an output domain that establishes a biological response. Prior designs have employed binding-induced folding of the input domain to drive a conformational change in the output domain. Adding a second input domain can in principle harvest additional binding energy for performing useful work. It is not obvious, however, how to fuse two binding domains to a single output domain such that folding of both binding domains combine to effect conformational change in the output domain. Methods: Here, we converted the ribonuclease barnase (Bn) to a switchable enzyme by duplicating a C-terminal portion of its sequence and appending it to its N-terminus, thereby establishing a native fold (OFF state) and a circularly permuted fold (ON state) that competed for the shared core in a mutually exclusive fashion. Two copies of FK506 binding protein (FKBP), both made unstable by the V24A mutation and one that had been circularly permuted, were inserted into the engineered barnase at the junctions between the shared and duplicated sequences. Results: Rapamycin-induced folding of FK506 binding protein stretched and unfolded the native fold of barnase via the mutually exclusive folding effect, and rapamycin-induced folding of permuted FK506 binding protein stabilized the permuted fold of barnase by the loop-closure entropy principle. These folding events complemented each other to turn on RNase function. The cytotoxic switching mechanism was validated in yeast and human cells, and in vitro with purified protein. Discussion: Thermodynamic modeling and experimental results revealed that the dual action of loop-closure entropy and mutually exclusive folding is analogous to an engine transmission in which loop-closure entropy acts as the low gear, providing efficient switching at low ligand concentrations, and mutually exclusive folding acts as the high gear to allow the switch to reach its maximum response at high ligand concentrations.
Collapse
|
5
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Fischer AAM, Kramer MM, Radziwill G, Weber W. Shedding light on current trends in molecular optogenetics. Curr Opin Chem Biol 2022; 70:102196. [PMID: 35988347 DOI: 10.1016/j.cbpa.2022.102196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| | - Markus M Kramer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| | - Gerald Radziwill
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany.
| |
Collapse
|
7
|
Jang J, Reed PMM, Rauscher S, Woolley GA. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates. Biochemistry 2022; 61:1444-1455. [PMID: 35759789 DOI: 10.1021/acs.biochem.2c00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - P Maximilian M Reed
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sarah Rauscher
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada.,Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
Zhang X, Pan Y, Kang S, Gu L. Combinatorial Approaches for Efficient Design of Photoswitchable Protein-Protein Interactions as In Vivo Actuators. Front Bioeng Biotechnol 2022; 10:844405. [PMID: 35211467 PMCID: PMC8863173 DOI: 10.3389/fbioe.2022.844405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Light switchable two-component protein dimerization systems offer versatile manipulation and dissection of cellular events in living systems. Over the past 20 years, the field has been driven by the discovery of photoreceptor-based interaction systems, the engineering of light-actuatable binder proteins, and the development of photoactivatable compounds as dimerization inducers. This perspective is to categorize mechanisms and design approaches of these dimerization systems, compare their advantages and limitations, and bridge them to emerging applications. Our goal is to identify new opportunities in combinatorial protein design that can address current engineering challenges and expand in vivo applications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Yuxin Pan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Shoukai Kang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Liangcai Gu
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Woloschuk RM, Reed PMM, Jaikaran ASI, Demmans KZ, Youn J, Kanelis V, Uppalapati M, Woolley GA. Structure-based design of a photoswitchable affibody scaffold. Protein Sci 2021; 30:2359-2372. [PMID: 34590762 DOI: 10.1002/pro.4196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Photo-control of affinity reagents offers a general approach for high-resolution spatiotemporal control of diverse molecular processes. In an effort to develop general design principles for a photo-controlled affinity reagent, we took a structure-based approach to the design of a photoswitchable Z-domain, among the simplest of affinity reagent scaffolds. A chimera, designated Z-PYP, of photoactive yellow protein (PYP) and the Z-domain, was designed based on the concept of mutually exclusive folding. NMR analysis indicated that, in the dark, the PYP domain of the chimera was folded, and the Z-domain was unfolded. Blue light caused loss of structure in PYP and a two- to sixfold change in the apparent affinity of Z-PYP for its target as determined using size exclusion chromatography, UV-Vis based assays, and enyzme-linked immunosorbent assay (ELISA). A thermodynamic model indicated that mutations to decrease Z-domain folding energy would alter target affinity without loss of switching. This prediction was confirmed experimentally with a double alanine mutant in helix 3 of the Z-domain of the chimera (Z-PYP-AA) showing >30-fold lower dark-state binding and no loss in switching. The effect of decreased dark-state binding affinity was tested in a two-hybrid transcriptional control format and enabled pronounced light/dark differences in yeast growth in vivo. Finally, the design was transferable to the αZ-Taq affibody enabling tunable light-dependent binding both in vitro and in vivo to the Z-Taq target. This system thus provides a framework for the focused development of light switchable affibodies for a range of targets.
Collapse
Affiliation(s)
- Ryan M Woloschuk
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna S I Jaikaran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karl Z Demmans
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Youn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|