1
|
Hernández-Vázquez E, Ramírez-Trinidad Á, Tovar-Román CE, Rivera Chávez JA, Huerta-Salazar E. N-acyl-4-arylaminopiperidines: Design and synthesis of a potential antimicrobial scaffold. Bioorg Med Chem Lett 2024; 112:129936. [PMID: 39214507 DOI: 10.1016/j.bmcl.2024.129936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We report a concise synthesis of N-acylated piperidines through a Knoevenagel-Doebner condensation/amide construction/ amination sequence. The design of the piperidines considered the pharmacophoric features found in previously reported inhibitors of FabI, an enzyme implicated in bacterial fatty acid biosynthesis. After the microbiological evaluation at 50 μM, the analogs displayed moderate activity against some pathogens from the ESKAPE group, reaching up to 42 % of growth inhibition for MRSA, 54 % for K. pneumoniae, and 37 % for P. aeruginosa (multiresistant strains). Docking studies demonstrate that almost all of them docked satisfactorily into the catalytic domain of S. aureus FabI, maintaining a similar pose as other reported inhibitors. The results shown herein propose the N-acyl-4-arylaminopiperidines as the basis for the development of more active candidates.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico.
| | - Ángel Ramírez-Trinidad
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - César E Tovar-Román
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - José A Rivera Chávez
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - Elizabeth Huerta-Salazar
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Luo T, Hu E, Gan L, Yang D, Wu J, Gao S, Tuo X, Bayin CG, Hu Z, Guo Q. Candidatus Midichloria mitochondrii can be vertically transmitted in Hyalomma anatolicum. Exp Parasitol 2024; 265:108828. [PMID: 39159853 DOI: 10.1016/j.exppara.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the FabⅠ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.
Collapse
Affiliation(s)
- Tingxiang Luo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China; Xingjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Uygur Autonomous Region, 830052, China; Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Lu Gan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Depeng Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Jun Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Shenghong Gao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Xiaoli Tuo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Chahan Gailike Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China
| | - Zhengxiang Hu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China.
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, 830052, China.
| |
Collapse
|
3
|
Biswas S, Patra A, Paul P, Misra N, Kushwaha GS, Suar M. Structural and Biochemical Studies on Klebsiella Pneumoniae Enoyl-ACP Reductase (FabI) Suggest Flexible Substrate Binding Site. Protein J 2024; 43:84-95. [PMID: 38127182 DOI: 10.1007/s10930-023-10176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Klebsiella pneumoniae, a bacterial pathogen infamous for antibiotic resistance, is included in the priority list of pathogens by various public health organizations due to its extraordinary ability to develop multidrug resistance. Bacterial fatty acid biosynthesis pathway-II (FAS-II) has been considered a therapeutic drug target for antibacterial drug discovery. Inhibition of FAS-II enzyme, enoyl-acyl carrier protein reductase, FabI, not only inhibits bacterial infections but also reverses antibiotic resistance. Here, we characterized Klebsiella pneumoniae FabI (KpFabI) using complementary experimental approaches including, biochemical, x-ray crystallography, and molecular dynamics simulation studies. Biophysical studies shows that KpFabI organizes as a tetramer molecular assembly in solution as well as in the crystal structure. Enzyme kinetics studies reveal a distinct catalytic property towards crotonyl CoA and reducing cofactor NADH. Michaelis-Menten constant (Km) values of substrates show that KpFabI has higher preference towards NADH as compared to crotonyl CoA. The crystal structure of tetrameric apo KpFabI folds into a classic Rossman fold in which β-strands are sandwiched between α-helices. A highly flexible substrate binding region is located toward the interior of the tetrameric assembly. Thermal stability assay on KpFabI with its substrate shows that the flexibility is primarily stabilized by cofactor NADH. Moreover, the molecular dynamics further supports that KpFabI has highly flexible regions at the substrate binding site. Together, these findings provide evidence for highly dynamic substrate binding sites in KpFabI, therefore, this information will be vital for specific inhibitors discovery targeting Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Soumya Biswas
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre of Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prajita Paul
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre of Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
| |
Collapse
|
4
|
Maltarollo VG, Shevchenko E, Lima IDDM, Cino EA, Ferreira GM, Poso A, Kronenberger T. Do Go Chasing Waterfalls: Enoyl Reductase (FabI) in Complex with Inhibitors Stabilizes the Tetrameric Structure and Opens Water Channels. J Chem Inf Model 2022; 62:5746-5761. [PMID: 36343333 DOI: 10.1021/acs.jcim.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.
Collapse
Affiliation(s)
- Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Igor Daniel de Miranda Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Mak T, Rossjohn J, Littler DR, Liu M, Quinn RJ. Collision-Induced Affinity Selection Mass Spectrometry for Identification of Ligands. ACS BIO & MED CHEM AU 2022; 2:450-455. [PMID: 37101899 PMCID: PMC10125361 DOI: 10.1021/acsbiomedchemau.2c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyphenated mass spectrometry has been used to identify ligands binding to proteins. It involves mixing protein and compounds, separation of protein-ligand complexes from unbound compounds, dissociation of the protein-ligand complex, separation to remove protein, and injection of the supernatant into a mass spectrometer to observe the ligand. Here we report collision-induced affinity selection mass spectrometry (CIAS-MS), which allows separation and dissociation inside the instrument. The quadrupole was used to select the ligand-protein complex and allow unbound molecules to be exhausted to vacuum. Collision-induced dissociation (CID) dissociated the protein-ligand complex, and the ion guide and resonance frequency were used to selectively detect the ligand. A known SARS-CoV-2 Nsp9 ligand, oridonin, was successfully detected when it was mixed with Nsp9. We provide proof-of-concept data that the CIAS-MS method can be used to identify binding ligands for any purified protein.
Collapse
Affiliation(s)
- Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|