1
|
Bonollo G, Trèves G, Komarov D, Mansoor S, Moroni E, Colombo G. Advancing Molecular Simulations: Merging Physical Models, Experiments, and AI to Tackle Multiscale Complexity. J Phys Chem Lett 2025; 16:3606-3615. [PMID: 40179097 PMCID: PMC12010417 DOI: 10.1021/acs.jpclett.5c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Proteins and protein complexes form adaptable networks that regulate essential biochemical pathways and define cell phenotypes through dynamic mechanisms and interactions. Advances in structural biology and molecular simulations have revealed how protein systems respond to changes in their environments, such as ligand binding, stress conditions, or perturbations like mutations and post-translational modifications, influencing signal transduction and cellular phenotypes. Here, we discuss how computational approaches, ranging from molecular dynamics (MD) simulations to AI-driven methods, are instrumental in studying protein dynamics from isolated molecules to large assemblies. These techniques elucidate conformational landscapes, ligand-binding mechanisms, and protein-protein interactions and are starting to support the construction of multiscale realistic representations of highly complex systems, ranging up to whole cell models. With cryo-electron microscopy, cryo-electron tomography, and AlphaFold accelerating the structural characterization of protein networks, we suggest that integrating AI and Machine Learning with multiscale MD methods will enhance fundamental understating for systems of ever-increasing complexity, usher in exciting possibilities for predictive modeling of the behavior of cell compartments or even whole cells. These advances are indeed transforming biophysics and chemical biology, offering new opportunities to study biomolecular mechanisms at atomic resolution.
Collapse
Affiliation(s)
- Giorgio Bonollo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Gauthier Trèves
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Denis Komarov
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Samman Mansoor
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Elisabetta Moroni
- National
Research Council of Italy (CNR) - Institute of Chemical Sciences and
Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Oliveira ASF, Kearns FL, Rosenfeld MA, Casalino L, Tulli L, Berger I, Schaffitzel C, Davidson AD, Amaro RE, Mulholland AJ. Allosteric modulation by the fatty acid site in the glycosylated SARS-CoV-2 spike. eLife 2025; 13:RP97313. [PMID: 40208235 PMCID: PMC11984958 DOI: 10.7554/elife.97313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Tulli
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Imre Berger
- School of Chemistry, University of BristolBristolUnited Kingdom
- School of Biochemistry, University of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal Biology, School of ChemistryBristolUnited Kingdom
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University WalkBristolUnited Kingdom
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San DiegoLa JollaUnited States
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
3
|
Torielli L, Guarra F, Shao H, Gestwicki JE, Serapian SA, Colombo G. Pathogenic mutation impairs functional dynamics of Hsp60 in mono- and oligomeric states. Nat Commun 2025; 16:3158. [PMID: 40180932 PMCID: PMC11968893 DOI: 10.1038/s41467-025-57958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondrial chaperonin Heat Shock Protein 60 kDa (Hsp60) oversees the correct folding of client proteins in cooperation with Hsp10. Hsp60 monomers M first form 7-meric Single rings (S), which then pair into 14-meric Double rings (D) that accommodate clients in their lumen. Recruitment of 7 Hsp10 molecules per pole yields a sealed 28-meric Football-shaped complex (F). ATP hydrolysis in each Hsp60 unit drives client folding and F disassembly. The V72I mutation in hereditary spastic paraplegia form SPG13 impairs Hsp60 function despite being distant from the active site. We here investigate this impairment with atomistic molecular dynamics (MD) simulations of M, S, D, and F for both WT and mutant Hsp60, considering catalytic aspartates in D and F in different protonation states (even simulating one such state of D post-hydrolysis). Our findings show that-as observed experimentally-V72I rigidifies Hsp60 assemblies, significantly impacting internal dynamics. In monomers, V72I introduces a new allosteric route that bypasses the ATP binding site and affects mechanisms driving reactivity. These insights highlight a multiscale complexity of Hsp60 that could inspire the design of experiments to better understand both its WT and V72I variants.
Collapse
Affiliation(s)
- Luca Torielli
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
4
|
Kotzampasi DM, Papadourakis M, Burke JE, Cournia Z. Free energy landscape of the PI3Kα C-terminal activation. Comput Struct Biotechnol J 2024; 23:3118-3131. [PMID: 39229338 PMCID: PMC11369385 DOI: 10.1016/j.csbj.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
The gene PIK3CA, encoding the catalytic subunit p110α of PI3Kα, is the second most frequently mutated gene in cancer, with the highest frequency oncogenic mutants occurring in the C-terminus of the kinase domain. The C-terminus has a dual function in regulating the kinase, playing a putative auto-inhibitory role for kinase activity and being absolutely essential for binding to the cell membrane. However, the molecular mechanisms by which these C-terminal oncogenic mutations cause PI3Kα overactivation remain unclear. To understand how a spectrum of C-terminal mutations of PI3Kα alter kinase activity compared to the WT, we perform unbiased and biased Molecular Dynamics simulations of several C-terminal mutants and report the free energy landscapes for the C-terminal "closed-to-open" transition in the WT, H1047R, G1049R, M1043L and N1068KLKR mutants. Results are consistent with HDX-MS experimental data and provide a molecular explanation why H1047R and G1049R reorient the C-terminus with a different mechanism compared to the WT and M1043L and N1068KLKR mutants. Moreover, we show that in the H1047R mutant, the cavity, where the allosteric ligands STX-478 and RLY-2608 bind, is more accessible contrary to the WT. This study provides insights into the molecular mechanisms underlying activation of oncogenic PI3Kα by C-terminal mutations and represents a valuable resource for continued efforts in the development of mutant selective inhibitors as therapeutics.
Collapse
Affiliation(s)
- Danai Maria Kotzampasi
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
- Department of Biology, University of Crete, Heraklion 71500, Greece
| | | | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
5
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
6
|
He Y, Wang S, Zeng S, Zhu J, Xu D, Han W, Wang J. NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation. J Chem Inf Model 2024; 64:7176-7183. [PMID: 38991149 DOI: 10.1021/acs.jcim.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Long-range allosteric communication between distant sites and active sites in proteins is central to biological regulation but still poorly characterized, limiting the development of protein engineering and drug design. Addressing this gap, NRIMD is an open-access web server for analyzing long-range interactions in proteins from molecular dynamics (MD) simulations, such as the effect of mutations at distal sites or allosteric ligand binding at allosteric sites on the active center. Based on our recent works on neural relational inference using graph neural networks, this cloud-based web server accepts MD simulation data on any length of residues in the alpha-carbon skeleton format from mainstream MD software. The input trajectory data are validated at the frontend deployed on the cloud and then processed on the backend deployed on a high-performance computer system with a collection of complementary tools. The web server provides a one-stop-shop MD analysis platform to predict long-range interactions and their paths between distant sites and active sites. It provides a user-friendly interface for detailed analysis and visualization. To the best of our knowledge, NRIMD is the first-of-its-kind online service to provide comprehensive long-range interaction analysis on MD simulations, which significantly lowers the barrier of predictions on protein long-range interactions using deep learning. The NRIMD web server is publicly available at https://nrimd.luddy.indianapolis.iu.edu/.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shuang Wang
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juexin Wang
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Guarra F, Sciva C, Bonollo G, Pasala C, Chiosis G, Moroni E, Colombo G. Cracking the chaperone code through the computational microscope. Cell Stress Chaperones 2024; 29:626-640. [PMID: 39142378 PMCID: PMC11399801 DOI: 10.1016/j.cstres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.
Collapse
Affiliation(s)
| | | | | | - Chiranjeevi Pasala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC) - Italian National Research Council (CNR), Milano, Italy.
| | | |
Collapse
|
8
|
Frasnetti E, Magni A, Castelli M, Serapian SA, Moroni E, Colombo G. Structures, dynamics, complexes, and functions: From classic computation to artificial intelligence. Curr Opin Struct Biol 2024; 87:102835. [PMID: 38744148 DOI: 10.1016/j.sbi.2024.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Computational approaches can provide highly detailed insight into the molecular recognition processes that underlie drug binding, the assembly of protein complexes, and the regulation of biological functional processes. Classical simulation methods can bridge a wide range of length- and time-scales typically involved in such processes. Lately, automated learning and artificial intelligence methods have shown the potential to expand the reach of physics-based approaches, ushering in the possibility to model and even design complex protein architectures. The synergy between atomistic simulations and AI methods is an emerging frontier with a huge potential for advances in structural biology. Herein, we explore various examples and frameworks for these approaches, providing select instances and applications that illustrate their impact on fundamental biomolecular problems.
Collapse
Affiliation(s)
- Elena Frasnetti
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Andrea Magni
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
9
|
McNutt SW, Roychowdhury T, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, DeStanchina E, Corben A, Modi S, Alpaugh M, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-Driven Epichaperome Assembly: A Critical Regulator of Cellular Adaptability and Proliferation. RESEARCH SQUARE 2024:rs.3.rs-4114038. [PMID: 38645031 PMCID: PMC11030525 DOI: 10.21203/rs.3.rs-4114038/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- co-first author, equally contributed to the work
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- co-first author, equally contributed to the work
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, California 94143, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
- These authors jointly supervised this work: Feixia Chu, Gabriela Chiosis
| |
Collapse
|