1
|
Brahma R, Raghuraman H. Measuring Membrane Penetration Depths and Conformational Changes in Membrane Peptides and Proteins. J Membr Biol 2022; 255:469-483. [PMID: 35274157 DOI: 10.1007/s00232-022-00224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
The structural organization and dynamic nature of the biomembrane components are important determinants for numerous cellular functions. Particularly, membrane proteins are critically important for various physiological functions and are important drug targets. The mechanistic insights on the complex functionality of membrane lipids and proteins can be elucidated by understanding the interplay between structure and dynamics. In this regard, membrane penetration depth represents an important parameter to obtain the precise depth of membrane-embedded molecules that often define the conformation and topology of membrane probes and proteins. In this review, we discuss about the widely used fluorescence quenching-based methods (parallax method, distribution analysis, and dual-quencher analysis) to accurately determine the membrane penetration depths of fluorescent probes that are either membrane-embedded or attached to lipids and proteins. Further, we also discuss a relatively novel fluorescence quenching method that utilizes tryptophan residue as the quencher, namely the tryptophan-induced quenching, which is sensitive to monitor small-scale conformational changes (short distances of < 15 Å) and useful in mapping distances in proteins. We have provided numerous examples for the benefit of readers to appreciate the importance and applicability of these simple yet powerful methods to study membrane proteins.
Collapse
Affiliation(s)
- Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata, 700 064, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata, 700 064, India.
| |
Collapse
|
2
|
Chatterjee S, Brahma R, Raghuraman H. Gating-related Structural Dynamics of the MgtE Magnesium Channel in Membrane-Mimetics Utilizing Site-Directed Tryptophan Fluorescence. J Mol Biol 2020; 433:166691. [PMID: 33203509 DOI: 10.1016/j.jmb.2020.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
Magnesium is the most abundant divalent cation present in the cell, and an abnormal Mg2+ homeostasis is associated with several diseases in humans. However, among ion channels, the mechanisms of intracellular regulation and transport of Mg2+ are poorly understood. MgtE is a homodimeric Mg2+-selective channel and is negatively regulated by high intracellular Mg2+ concentration where the cytoplasmic domain of MgtE acts as a Mg2+ sensor. Most of the previous biophysical studies on MgtE have been carried out in detergent micelles and the information regarding gating-related structural dynamics of MgtE in physiologically-relevant membrane environment is scarce. In this work, we monitored the changes in gating-related structural dynamics, hydration dynamics and conformational heterogeneity of MgtE in micelles and membranes using the intrinsic site-directed Trp fluorescence. For this purpose, we have engineered six single-Trp mutants in the functional Trp-less background of MgtE to obtain site-specific information on the gating-related structural dynamics of MgtE in membrane-mimetic systems. Our results indicate that Mg2+-induced gating might involve the possibility of a 'conformational wave' from the cytosolic N-domain to transmembrane domain of MgtE. Although MgtE is responsive to Mg2+-induced gating in both micelles and membranes, the organization and dynamics of MgtE is substantially altered in physiologically important phospholipid membranes compared to micelles. This is accompanied by significant changes in hydration dynamics and conformational heterogeneity. Overall, our results highlight the importance of lipid-protein interactions and are relevant for understanding gating mechanism of magnesium channels in general, and MgtE in particular.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
| |
Collapse
|
3
|
Zhao Y, Mao G, Liu M, Zhang L, Wang X, Zhang XC. Crystal structure of the E. coli peptide transporter YbgH. Structure 2014; 22:1152-1160. [PMID: 25066136 DOI: 10.1016/j.str.2014.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 11/28/2022]
Abstract
E. coli YbgH belongs to the family of proton-dependent oligopeptide transporters (POTs), a subfamily of the major facilitator superfamily (MFS) of secondary active transporters. Like other MFS transporters, POT proteins switch between two major conformations during substrate transport. Apart from possessing a canonical 12-helix, two-domain transmembrane (TM) core, prokaryotic POT proteins usually have two TM helices inserted between the two domains. Here we determined the crystal structure of YbgH in its inward-facing conformation. Our structure-based functional studies investigated the roles of both the POT signature motif 2 and the inserted interdomain TM helix pair in the stabilization and regulation of the major conformational change in MFS/POT transporters. Furthermore, of all the proton-titratable amino acid residues, Glu21 is the only conserved one (among POTs) located in the central cavity and is critical for in vivo transport. Together, our results support the notion that MFS symporters utilize a transport mechanism based on substrate-protonation coupling.
Collapse
Affiliation(s)
- Yan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Guotao Mao
- National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laixing Zhang
- National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xianping Wang
- National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
4
|
Harris NJ, Findlay HE, Simms J, Liu X, Booth PJ. Relative domain folding and stability of a membrane transport protein. J Mol Biol 2014; 426:1812-25. [PMID: 24530957 DOI: 10.1016/j.jmb.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately +2 kcal mol(-1). There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of +2 kcal mol(-1). This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.
Collapse
Affiliation(s)
- Nicola J Harris
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - John Simms
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xia Liu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paula J Booth
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Li L, Jiang Y, Zhang H, Feng W, Chen B, Tan T. Theoretical and Experimental Studies on Activity of Yarrowia lipolytica Lipase in Methanol/Water Mixtures. J Phys Chem B 2014; 118:1976-83. [DOI: 10.1021/jp404039a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingli Li
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyang Zhang
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biqiang Chen
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess,
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Abstract
H(+), a most common ion, is involved in very many biological processes. However, most proteins have distinct ranges of pH for function; when the H(+) concentration in the cells is too high or too low, protons turn into very potent stressors to all cells. Therefore, all living cells are strictly dependent on homeostasis mechanisms that regulate their intracellular pH. Na(+)/H(+) antiporters play primary role in pH homeostatic mechanisms both in prokaryotes and eukaryotes. Regulation by pH is a property common to these antiporters. They are equipped with a pH sensor to perceive the pH signal and a pH transducer to transduce the signal into a change in activity. Determining the crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli have provided the basis for understanding in a realistic rational way the unique regulation of an antiporter by pH and the mechanism of the antiport activity. The physical separation between the pH sensor/transducer and the active site revealed by the structure entailed long-range pH-induced conformational changes for NhaA pH activation. As yet, it is not possible to decide whether the amino acid participating in the pH sensor and the pH transducer overlap or are separated. The pH sensor/transducer is not a single amino acid but rather a cluster of electrostatically interacting residues. Thus, integrating structural, computational, and experimental approaches are essential to reveal how the pH signal is perceived and transduced to activate the pH regulated protein.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
|
8
|
Smirnova I, Kasho V, Sugihara J, Kaback HR. Probing of the rates of alternating access in LacY with Trp fluorescence. Proc Natl Acad Sci U S A 2009; 106:21561-6. [PMID: 19959662 PMCID: PMC2799877 DOI: 10.1073/pnas.0911434106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Indexed: 11/18/2022] Open
Abstract
Sugar/H(+) symport by lactose permease (LacY) utilizes an alternating access mechanism in which sugar and H(+) binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by sequential opening and closing of inward- and outward-facing hydrophilic cavities. Here, we introduce Trp residues on either side of LacY where they are predicted to be in close proximity to side chains of natural Trp quenchers in either the inward- or outward-facing conformers. In the inward-facing conformer, LacY is tightly packed on the periplasmic side, and Trp residues placed at positions 245 (helix VII) or 378 (helix XII) are in close contact with His-35 (helix I) or Lys-42 (helix II), respectively. Sugar binding leads to unquenching of Trp fluorescence in both mutants, a finding clearly consistent with opening of the periplasmic cavity. The pH dependence of Trp-245 unquenching exhibits a pK(a) of 8, typical for a His side chain interacting with an aromatic group. As estimated from stopped-flow studies, the rate of sugar-induced opening is approximately 100 s(-1). On the cytoplasmic side, Phe-140 (helix V) and Phe-334 (helix X) are located on opposite sides of a wide-open hydrophilic cavity. In precisely the opposite fashion from the periplasmic side, mutant Phe-140-->Trp/Phe-334-->His exhibits sugar-induced Trp quenching. Again, quenching is pH dependent (pK(a) = 8), but remarkably, the rate of sugar-induced quenching is only approximately 0.4 s(-1). The results provide yet another strong, independent line of evidence for the alternating access mechanism and demonstrate that the methodology described provides a sensitive probe to measure rates of conformational change in membrane transport proteins.
Collapse
Affiliation(s)
| | | | | | - H. Ronald Kaback
- Departments of Physiology and
- Microbiology, Immunology, and Molecular Genetics, and
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-7327
| |
Collapse
|
9
|
Salafsky JS, Cohen B. A Second-Harmonic-Active Unnatural Amino Acid as a Structural Probe of Biomolecules on Surfaces. J Phys Chem B 2008; 112:15103-7. [DOI: 10.1021/jp803703m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua S. Salafsky
- Biodesy, LLC, Burlingame, California 94010, and Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley Laboratory, Berkeley, California 94720
| | - Bruce Cohen
- Biodesy, LLC, Burlingame, California 94010, and Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley Laboratory, Berkeley, California 94720
| |
Collapse
|
10
|
Quick M, Javitch JA. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc Natl Acad Sci U S A 2007; 104:3603-8. [PMID: 17360689 PMCID: PMC1805550 DOI: 10.1073/pnas.0609573104] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport proteins constitute approximately 10% of most proteomes and play vital roles in the translocation of solutes across membranes of all organisms. Their (dys)function is implicated in many disorders, making them frequent targets for pharmacotherapy. The identification of substrates for members of this large protein family, still replete with many orphans of unknown function, has proven difficult, in part because high-throughput screening is greatly complicated by endogenous transporters present in many expression systems. In addition, direct structural studies require that transporters be extracted from the membrane with detergent, thereby precluding transport measurements because of the lack of a vectorial environment and necessitating reconstitution into proteoliposomes for activity measurements. Here, we describe a direct scintillation proximity-based radioligand-binding assay for determining transport protein function in crude cell extracts and in purified form. This rapid and universally applicable assay with advantages over cell-based platforms will greatly facilitate the identification of substrates for many orphan transporters and allows monitoring the function of transport proteins in a nonmembranous environment.
Collapse
Affiliation(s)
| | - Jonathan A. Javitch
- *Center for Molecular Recognition and
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032
- To whom correspondence should be addressed at: Columbia University College of Physicians and Surgeons, Center for Molecular Recognition, 630 West 168th Street, P&S 11-401, New York, NY 10032. E-mail:
| |
Collapse
|
11
|
Ermolova N, Guan L, Kaback HR. Intermolecular thiol cross-linking via loops in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:10187-92. [PMID: 12934015 PMCID: PMC193537 DOI: 10.1073/pnas.1434239100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous experiments using intermolecular thiol cross-linking to determine surface-exposed positions in the transmembrane helices of the lactose permease suggest that only positions accessible from the aqueous phase are susceptible to cross-linking. This approach is now extended to most of the remaining positions in the molecule. Of an additional 143 single-Cys mutants studied, homodimer formation is observed with both a 5-A- and a 21-A-long crosslinking agent containing bis-methane thiosulfonate reactive groups in 33 mutants and exclusively with the 21-A-long reagent in 43 mutants. Furthermore, intermolecular cross-linking has little or no effect on transport activity, thereby providing further support for the argument that lactose permease is functionally, as well as structurally, a monomer in the membrane. In addition, evidence is presented indicating that reentrance loops are unlikely in this polytopic membrane transport protein.
Collapse
Affiliation(s)
- Natalia Ermolova
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
12
|
Ghosh P, Ramakrishnan C, Chatterji D. Inter-subunit recognition and manifestation of segmental mobility in Escherichia coli RNA polymerase: a case study with omega-beta' interaction. Biophys Chem 2003; 103:223-37. [PMID: 12727285 DOI: 10.1016/s0301-4622(02)00271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Omega (omega), consisting of 91 amino acids, is the smallest of all the Escherichia coli RNA polymerase subunits and is organized into an N-terminal domain of 53 amino acids followed by an unstructured tail in the C-terminal region. Our earlier experiments have shown a chaperone-like function of omega in which it helps to maintain beta' in a correct conformation and recruit it to the alpha(2)beta subassembly to form a functional core enzyme (alpha(2)betabeta'omega). The X-ray structure analysis of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch onto the N-terminal and C-terminal ends of the beta'-subunit. In the present study we have monitored the conformational changes in beta' as the denatured protein is refolded in the presence and absence of omega using tryptophan fluorescence emission of beta' as well as acrylamide quenching of Trp fluorescence. Results indicate that the presence of stoichiometric amounts of omega is helpful in beta' refolding. We have also monitored the behavior of the C-terminal tail of omega by engineering three cysteine residues at three different sites in omega and subsequently labeling them with a sulphydryl-specific fluorescent probe. Fluorescence anisotropy measurements of the labeled protein indicate that the C-terminal domain of omega is mobile in the free protein and gets restrained in the presence of beta'. Calculations on side-chain interactions show that out of the three mutated positions, two have near neighbourhood interactions only with side-chains in the beta' subunit whereas the end of the C-terminal of omega, although it is restrained in the presence of beta', has no interacting partner within a 4-A radius.
Collapse
Affiliation(s)
- Pallavi Ghosh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, A.P., India
| | | | | |
Collapse
|
13
|
Kästner CN, Prummer M, Sick B, Renn A, Wild UP, Dimroth P. The citrate carrier CitS probed by single-molecule fluorescence spectroscopy. Biophys J 2003; 84:1651-9. [PMID: 12609868 PMCID: PMC1302735 DOI: 10.1016/s0006-3495(03)74974-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C(5) maleimide (AF(546), AF(568)). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF(546), complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF(546/568) and dual-color detection provided strong evidence for a homodimeric association of CitS.
Collapse
Affiliation(s)
- Christopher N Kästner
- Eidgenössische Technische Hochschule Zürich, Institut für Mikrobiologie, Institut für Physikalische Chemie, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Guan L, Murphy FD, Kaback HR. Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci U S A 2002; 99:3475-80. [PMID: 11904412 PMCID: PMC122548 DOI: 10.1073/pnas.052703699] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermolecular thiol cross-linking was used to determine surface-exposed positions in 250 lactose permease mutants containing single-Cys replacements in each transmembrane helix. Significant cross-linking of monomers to produce homodimers is observed in nine mutants with a 5-A-long cross-linking agent containing bis-methane thiosulfonate reactive groups [position 78 (helix III); positions 185, 186, and 187 (helix VI); positions 263, 275, and 278 (helix VIII); and positions 308 (helix IX) and 398 (helix XII)]. The results are consistent with a current helix-packing model of the permease. Seven of the nine mutants that exhibit intermolecular cross-linking are located at or near the cytoplasmic ends of transmembrane helices; two are near periplasmic ends. The results suggest that only those Cys replacements accessible from the aqueous phase and not from the hydrophobic core of the membrane are susceptible to cross-linking because of the much higher reactivity of the thiolate anion relative to the thiol. Single-Cys mutants at positions 278 (helix VIII) and 398 (helix XII), which are located in opposite sides of the 12-helix bundle, exhibit similar rates of cross-linking with sigmoid kinetics. Furthermore, cross-linking is markedly decreased at 0 degrees C, suggesting that lateral diffusion of the permease within the plane of the membrane is important for intermolecular cross-linking. The findings confirm previous observations indicating that intermolecular cross-linking is a stochastic process resulting from random collisions and support a number of other lines of evidence that lactose permease is a monomer.
Collapse
Affiliation(s)
- Lan Guan
- Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
15
|
Doring K, Surrey T, Grünewald S, John E, Jähnig F. Enhanced internal dynamics of a membrane transport protein during substrate translocation. Protein Sci 2000; 9:2246-50. [PMID: 11152135 PMCID: PMC2144487 DOI: 10.1110/ps.9.11.2246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conformational changes are essential for the activity of many proteins. If, or how fast, internal fluctuations are related to slow conformational changes that mediate protein function is not understood. In this study, we measure internal fluctuations of the transport protein lactose permease in the presence and absence of substrate by tryptophan fluorescence spectroscopy. We demonstrate that nanosecond fluctuations of alpha-helices are enhanced when the enzyme transports substrate. This correlates with previously published kinetic data from transport measurements showing that millisecond conformational transitions of the substrate-loaded carrier are faster than those in the absence of substrate. These findings corroborate the hypothesis of the hierarchical model of protein dynamics that predicts that slow conformational transitions are based on fast, thermally activated internal motions.
Collapse
Affiliation(s)
- K Doring
- Max-Planck-Institute for Biology, Department of Membrane Biochemistry, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Wang Q, Kaback HR. Proximity relationships between helices I and XI or XII in the lactose permease of Escherichia coli determined by site-directed thiol cross-linking. J Mol Biol 1999; 291:683-92. [PMID: 10448046 DOI: 10.1006/jmbi.1999.2948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lactose permease of Escherichia coli was expressed in two fragments (split permease), each with a Cys residue, and cross-linking was studied. Split permease with a discontinuity in either loop II/III (N2C10permease) or loop VI/VII (N6C6permease) was used. Proximity of multiple pairs of Cys residues in helices I and XI or XII was examined by using three homobifunctional thiol-specific cross-linking reagents of different lengths and flexibilities (6 A, rigid; 10 A, rigid; 16 A, flexible) or iodine. Cys residues in the periplasmic half of helix I cross-link to Cys residues in the periplasmic half of helix XI. In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices I and XI. Therefore, the periplasmic halves of helices I and XI are in close proximity, and the helices tilt away from each other towards the cytoplasmic face of the membrane. Cross-linking is also found with paired Cys residues near the middle of helices I and XII, but not with paired Cys residues near either end of the helices. Thus, helices I and XII are in close proximity only in the approximate middle of the membrane. Based on the findings, a modified helix packing model is proposed.
Collapse
Affiliation(s)
- Q Wang
- Departments of Physiology and Microbiology and Molecular Genetics Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1662, USA
| | | |
Collapse
|
17
|
Venkatesan P, Kaback HR. The substrate-binding site in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:9802-7. [PMID: 9707556 PMCID: PMC21417 DOI: 10.1073/pnas.95.17.9802] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/1998] [Indexed: 11/18/2022] Open
Abstract
Site-directed N-ethylmaleimide labeling was studied with Glu-126 and/or Arg-144 mutants in lactose permease containing a single, native Cys residue at position 148 in the substrate-binding site. Replacement of either Glu-126 or Arg-144 with Ala markedly decreases Cys-148 reactivity, whereas interchanging the residues, double-Ala replacement, or replacement of Arg-144 with Lys or His does not alter reactivity, indicating that Glu-126 and Arg-144 are charge-paired. Importantly, although alkylation of Cys-148 is blocked by ligand in wild-type permease, no protection whatsoever is observed with any of the Glu-126 or Arg-144 mutants. Site-directed fluorescence with 2-(4-maleimidoanilino)-naphthalene-6-sulfonic acid (MIANS) in mutant Val-331 --> Cys was also studied. In marked contrast to Val-331 --> Cys permease, ligand does not alter MIANS reactivity in mutant Glu-126 --> Ala/Val-331 --> Cys, Arg-144 --> Ala/Val-331 --> Cys, or Arg-144 --> Lys/Val-331 --> Cys and does not cause either quenching or a shift in the emission maximum of the MIANS-labeled mutants. However, mutation Glu-126 --> Ala or Arg-144 --> Ala and, to a lesser extent, Arg-144 --> Lys cause a red-shift in the emission spectrum and render the fluorophore more accessible to I-. The results demonstrate that Glu-126 and Arg-144 are irreplaceable for substrate binding and suggest a model for the substrate-binding site in the permease. In addition, the findings are consistent with the notion that alterations in the substrate translocation pathway at the interface between helices IV and V are transmitted conformationally to the H+ translocation pathway at the interface between helices IX and X.
Collapse
Affiliation(s)
- P Venkatesan
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
18
|
Frillingos S, Ujwal ML, Sun J, Kaback HR. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis. Protein Sci 1997; 6:431-7. [PMID: 9041646 PMCID: PMC2143654 DOI: 10.1002/pro.5560060220] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.
Collapse
Affiliation(s)
- S Frillingos
- Howard Hughes Medical Institute, University of California Los Angeles 90095-1662, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
20
|
Wu J, Voss J, Hubbell WL, Kaback HR. Site-directed spin labeling and chemical crosslinking demonstrate that helix V is close to helices VII and VIII in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:10123-7. [PMID: 8816762 PMCID: PMC38347 DOI: 10.1073/pnas.93.19.10123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Site-directed chemical cleavage of lactose permease indicates that helix V is in close proximity to helices VII and VIII. To test this conclusion further, permease containing a biotin-acceptor domain and paired Cys residues at positions 148 (helix V) and 228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII) was affinity purified and labeled with a sulfhydryl-specific nitroxide spin label. Spin-spin interactions are observed with the 148/228 and 148/275 pairs, indicating close proximity between appropriate faces of helix V and helices VII and VIII. Little or no interaction is evident with the 148/226 pair, in all likelihood because position 226 is on the opposite face of helix VII from position 228. Broadening of the electron paramagnetic resonance spectra in the frozen state was used to estimate distance between the 148/228 and the 148/275 pairs. The nitroxides at positions 148 and 228 or 148 and 275 are within approximately 13-15 A. Finally, Cys residues at positions 148 and 228 are crosslinked by dibromobimane, a bifunctional crosslinker that is approximately 5 A. long, while no crosslinking is detected between Cys residues at positions 148 and 275 or 148 and 226. The results provide strong support for a structure in which helix V is in close proximity to both helices VII and VIII and is oriented in such a fashion that Cys-148 is closer to helix VII.
Collapse
Affiliation(s)
- J Wu
- Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles 90095-1662, USA
| | | | | | | |
Collapse
|
21
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|