1
|
Lukacik P, Owen CD, Harris G, Bolla JR, Picaud S, Alibay I, Nettleship JE, Bird LE, Owens RJ, Biggin PC, Filippakopoulos P, Robinson CV, Walsh MA. The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS One 2021; 16:e0256070. [PMID: 34653190 PMCID: PMC8519434 DOI: 10.1371/journal.pone.0256070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
Collapse
Affiliation(s)
- Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - C. David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne E. Nettleship
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Louise E. Bird
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Raymond J. Owens
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, Törnroth-Horsefield S, Riesbeck K, Garmendia J. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence 2019; 10:315-333. [PMID: 30973092 PMCID: PMC6550540 DOI: 10.1080/21505594.2019.1596506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.
Collapse
Affiliation(s)
| | - Tamim Al-Jubair
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Begoña Euba
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
3
|
Sgheiza V, Novick B, Stanton S, Pierce J, Kalmeta B, Holmquist MF, Grimaldi K, Bren KL, Michel LV. Covalent bonding of heme to protein prevents heme capture by nontypeable Haemophilus influenzae. FEBS Open Bio 2017; 7:1778-1783. [PMID: 29123985 PMCID: PMC5666386 DOI: 10.1002/2211-5463.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) are Gram‐negative pathogens that contribute to a variety of diseases, including acute otitis media and chronic obstructive pulmonary disease. As NTHi have an absolute requirement for heme during aerobic growth, these bacteria have to scavenge heme from their human hosts. These heme sources can range from free heme to heme bound to proteins, such as hemoglobin. To test the impact of heme structural factors on heme acquisition by NTHi, we prepared a series of heme sources that systematically vary in heme exposure and covalent binding of heme to peptide/protein and tested the ability of NTHi to use these sources to support growth. Results from this study suggest that NTHi can utilize protein‐associated heme only if it is noncovalently attached to the protein.
Collapse
Affiliation(s)
- Valerie Sgheiza
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Bethany Novick
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Sarah Stanton
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Jeanetta Pierce
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Breanne Kalmeta
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | | | - Kyle Grimaldi
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| | - Kara L Bren
- Department of Chemistry University of Rochester NY USA
| | - Lea Vacca Michel
- School of Chemistry and Materials Science Rochester Institute of Technology NY USA
| |
Collapse
|
4
|
Zhang L, Wen Y, Li Y, Wei X, Yan X, Wen X, Wu R, Huang X, Huang Y, Yan Q, Liu M, Cao S. Comparative proteomic analysis of the membrane proteins of two Haemophilus parasuis strains to identify proteins that may help in habitat adaptation and pathogenesis. Proteome Sci 2014; 12:38. [PMID: 25057263 PMCID: PMC4107730 DOI: 10.1186/1477-5956-12-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/29/2014] [Indexed: 01/03/2023] Open
Abstract
Background Haemophilus parasuis is the causative agent of Glässer’s disease characterized by polyserositis, arthritis, and meningitis in pig, leading to serious economic loss. Despite many years of study, virulence factors and the mechanisms of the entire infection process remain largely unclear. So two-dimensional gel electrophoresis and mass spectrometry were used to search for distinctions at the membrane protein expression level between two H. parasuis isolates aimed at uncovering some proteins potentially involved in habitat adaption and pathogenesis. Results A comparative proteomic approach combining two-dimensional gel electrophoresis with mass spectrometry and tandem mass spectrometry was employed to explore the differences among membrane proteomes of a virulent Haemophilus parasuis strain isolated from the lung of a diseased pig and an avirulent strain isolated from the nasal swab of a healthy pig. Differentially expressed protein spots identified by mass spectrometry were annotated and analyzed by bioinformatic interpretation. The mRNA level was determined by quantitative real-time PCR. Proteins representing diverse functional activities were identified. Among them, the tonB-dependent siderophore receptor was a new discovery highlighted for its activity in iron uptake. In addition, periplasmic serine protease and putrescine/spermidine ABC transporter substrate-binding protein were given focus because of their virulence potential. This study revealed that the differentially expressed proteins were important in either the habitat adaption or pathogenesis of H. parasuis. Conclusions The outcome demonstrated the presence of some proteins which raise the speculation for their importance in helping in habitat adaption or pathogenesis within the host.
Collapse
Affiliation(s)
- Luhua Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Ying Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xingliang Wei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xuefeng Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xintian Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yong Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qigui Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
5
|
Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol 2011; 193:2527-35. [PMID: 21441512 DOI: 10.1128/jb.01313-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strategies of innate immune evasion and essential metabolic functions are critical for commensal-host homeostasis. Previously, we showed that Sap translocator function is necessary for nontypeable Haemophilus influenzae (NTHI) behaviors that mediate diseases of the human airway. Antimicrobial peptide (AP) lethality is limited by binding mediated by the Sap complex. SapA shares homology with the dipeptide-binding protein (DppA) and the heme-binding lipoprotein (HbpA), both of which have previously been shown to bind the iron-containing compound heme, whose acquisition is essential for Haemophilus survival. Computational modeling revealed conserved SapA residues, similarly modeled to mediate heme binding in HbpA. Here, we directly demonstrate that SapA bound heme and was essential for heme utilization by iron-starved NTHI. Further, the Sap translocator permease mediated heme transport into the bacterial cytoplasm, thus defining a heretofore unknown mechanism of intracytoplasmic membrane heme transport in Haemophilus. Since we demonstrate multiple ligand specificity for the SapA-binding protein, we tested whether APs would compete with heme for SapA binding. We showed that human β-defensins 2 and 3, human cathelicidin LL-37, human neutrophil protein 1, and melittin displaced heme bound to SapA, thus supporting a hierarchy wherein immune evasion supercedes even the needed iron acquisition functions of the Sap system.
Collapse
|
6
|
Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. Proc Natl Acad Sci U S A 2010; 107:13270-5. [PMID: 20628015 DOI: 10.1073/pnas.1005198107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glutathione (GSH) is a vital intracellular cysteine-containing tripeptide across all kingdoms of life and assumes a plethora of cellular roles. Such pleiotropic behavior relies on a finely tuned spatiotemporal distribution of glutathione and its conjugates, which is not only controlled by synthesis and breakdown, but also by transport. Here, we show that import of glutathione in the obligate human pathogen Haemophilus influenzae, a glutathione auxotrophe, is mediated by the ATP-binding cassette (ABC)-like dipeptide transporter DppBCDF, which is primed for glutathione transport by a dedicated periplasmic-binding protein (PBP). We have identified the periplasmic lipoprotein HbpA, a protein hitherto implicated in heme acquisition, as the cognate PBP that specifically binds reduced (GSH) and oxidized glutathione (GSSG) forms of glutathione with physiologically relevant affinity, while it exhibits marginal binding to hemin. Dissection of the ligand preferences of HbpA showed that HbpA does not recognize bulky glutathione S conjugates or glutathione derivatives with C-terminal modifications, consistent with the need for selective import of useful forms of glutathione and the concomitant exclusion of potentially toxic glutathione adducts. Structural studies of the highly homologous HbpA from Haemophilus parasuis in complex with GSSG have revealed the structural basis of the proposed novel function for HbpA-like proteins, thus allowing a delineation of highly conserved structure-sequence fingerprints for the entire family of HbpA proteins. Taken together, our studies unmask the main physiological role of HbpA and establish a paradigm for glutathione import in bacteria. Accordingly, we propose a name change for HbpA to glutathione-binding protein A.
Collapse
|
7
|
Zhou M, Zhang A, Guo Y, Liao Y, Chen H, Jin M. A comprehensive proteome map of the Haemophilus parasuis serovar 5. Proteomics 2009; 9:2722-39. [PMID: 19405026 DOI: 10.1002/pmic.200800717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease of pigs, a disease associated with fibrinous polyserositis, polyarthritis and meningitis. Systematic reference maps of outer membrane, intracellular and extracellular proteome fractions of the clinical isolate H. parasuis SH0165 were examined by 2-DE coupled with MALDI-TOF MS. A total of 539 proteins spots were successfully identified, corresponding to 317 different proteins that were classified into functional categories. The majority of these proteins were linked to housekeeping functions in amino acid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism and post-translational modification, protein turnover and chaperones. A significant number of outer membrane proteins were identified, such as Wza, Omp2, Omp5, D15 and PalA, which were supposed to play important roles in basic physiology of H. parasuis. In addition, several virulence-associated proteins involved in type I (TolC), type III (DsbA and DsbC) and type V (Autotransporter adhesins) secretion systems, and solute-binding proteins participating in iron-uptake systems were also identified in the present study.
Collapse
Affiliation(s)
- Mingguang Zhou
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, P. R. China
| | | | | | | | | | | |
Collapse
|
8
|
Létoffé S, Delepelaire P, Wandersman C. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Proc Natl Acad Sci U S A 2006; 103:12891-6. [PMID: 16905647 PMCID: PMC1568943 DOI: 10.1073/pnas.0605440103] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Indexed: 01/25/2023] Open
Abstract
Heme, a major iron source, is transported through the outer membrane of Gram-negative bacteria by specific heme/hemoprotein receptors and through the inner membrane by heme-specific, periplasmic, binding protein-dependent, ATP-binding cassette permeases. Escherichia coli K12 does not use exogenous heme, and no heme uptake genes have been identified. Nevertheless, a recombinant E. coli strain expressing just one foreign heme outer membrane receptor can use exogenous heme as an iron source. This result suggests either that heme might be able to cross the cytoplasmic membrane in the absence of specific carrier or that there is a functional inner membrane heme transporter. Here, we show that to use heme iron E. coli requires the dipeptide inner membrane ATP-binding cassette transporter (DppBCDF) and either of two periplasmic binding proteins: MppA, the L-alanyl-gamma-D-glutamyl-meso-diaminopimelate binding protein, or DppA, the dipeptide binding protein. Thus, wild-type E. coli has a peptide/heme permease despite being unable to use exogenous heme. DppA, which shares sequence similarity with the Haemophilus influenzae heme-binding protein HbpA, and MppA are functional heme-binding proteins. Peptides compete with heme for binding both "in vitro" and "in vivo."
Collapse
Affiliation(s)
- Sylvie Létoffé
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2172, 75724 Paris Cedex 15, France
| | - Philippe Delepelaire
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2172, 75724 Paris Cedex 15, France
| | - Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2172, 75724 Paris Cedex 15, France
| |
Collapse
|