1
|
Kaur R, Frederickson A, Wetmore SD. Elucidation of the catalytic mechanism of a single-metal dependent homing endonuclease using QM and QM/MM approaches: the case study of I- PpoI. Phys Chem Chem Phys 2024; 26:8919-8931. [PMID: 38426850 DOI: 10.1039/d3cp06201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Angela Frederickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
2
|
Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, Stoddard BL, Windbichler N, Crisanti A. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun 2014; 5:3977. [PMID: 24915045 PMCID: PMC4057611 DOI: 10.1038/ncomms4977] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023] Open
Abstract
It has been theorized that inducing extreme reproductive sex ratios could be a method to suppress or eliminate pest populations. Limited knowledge about the genetic makeup and mode of action of naturally occurring sex distorters and the prevalence of co-evolving suppressors has hampered their use for control. Here we generate a synthetic sex distortion system by exploiting the specificity of the homing endonuclease I-PpoI, which is able to selectively cleave ribosomal gene sequences of the malaria vector Anopheles gambiae that are located exclusively on the mosquito’s X chromosome. We combine structure-based protein engineering and molecular genetics to restrict the activity of the potentially toxic endonuclease to spermatogenesis. Shredding of the paternal X chromosome prevents it from being transmitted to the next generation, resulting in fully fertile mosquito strains that produce >95% male offspring. We demonstrate that distorter male mosquitoes can efficiently suppress caged wild-type mosquito populations, providing the foundation for a new class of genetic vector control strategies. Extreme reproductive sex ratios could result in the suppression or elimination of pest populations. Here, the authors design a synthetic sex distortion system in Anopheles gambiae that gives rise to fertile mosquito strains that produce over 95% male offsprings and could therefore be used to suppress mosquito populations.
Collapse
Affiliation(s)
- Roberto Galizi
- 1] Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK [2] Centro di Genomica Funzionale, University of Perugia, Dipartimento di Medicina Sperimentale Via Gambuli, Edificio D, 3° Piano, 06132 Perugia, Italy
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Miriam Menichelli
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anne Deredec
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Nikolai Windbichler
- 1] Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK [2]
| | - Andrea Crisanti
- 1] Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK [2] Centro di Genomica Funzionale, University of Perugia, Dipartimento di Medicina Sperimentale Via Gambuli, Edificio D, 3° Piano, 06132 Perugia, Italy [3]
| |
Collapse
|
3
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Sunder S, Greeson-Lott NT, Runge KW, Sanders SL. A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe. Yeast 2012; 29:275-91. [PMID: 22674789 DOI: 10.1002/yea.2908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Double-strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double-strand break into the genome by regulating the expression of the site-specific HO endonuclease with a galactose inducible promoter. Variations of the HO site-specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I-PpoI is tightly regulated with a tetracycline-inducible promoter. We show that induction of the I-PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break-adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well-conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double-stranded DNA breaks.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
5
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
6
|
Redondo P, Prieto J, Ramos E, Blanco FJ, Montoya G. Crystallization and preliminary X-ray diffraction analysis on the homing endonuclease I-Dmo-I in complex with its target DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1017-20. [PMID: 18084082 DOI: 10.1107/s1744309107049706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/10/2007] [Indexed: 11/10/2022]
Abstract
Homing endonucleases are highly specific DNA-cleaving enzymes that recognize long stretches of base pairs. The availability of these enzymes has opened novel perspectives for genome engineering in a wide range of fields, including gene therapy, by taking advantage of the homologous gene-targeting enhancement induced by a double-strand break. I-Dmo-I is a well characterized homing endonuclease from the archaeon Desulfurococcus mobilis. The enzyme was cloned and overexpressed in Escherichia coli. Crystallization experiments of I-Dmo-I in complex with its DNA target in the presence of Ca(2+) and Mg(2+) yielded crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 106.75, b = 70.18, c = 106.85 A, alpha = gamma = 90, beta = 119.93 degrees . The self-rotation function and the Matthews coefficient suggested the presence of three protein-DNA complexes per asymmetric unit. The crystals diffracted to a resolution limit of 2.6 A using synchrotron radiation at the Swiss Light Source (SLS) and the European Synchrotron Radiation Facility (ESRF).
Collapse
Affiliation(s)
- Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Prieto J, Epinat JC, Redondo P, Ramos E, Padró D, Cédrone F, Montoya G, Pâques F, Blanco FJ. Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease. J Biol Chem 2007; 283:4364-74. [PMID: 17999959 DOI: 10.1074/jbc.m706323200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic archaeon Desulfurococcus mobilis I-DmoI protein belongs to the family of proteins known as homing endonucleases (HEs). HEs are highly specific DNA-cleaving enzymes that recognize long stretches of DNA and are powerful tools for genome engineering. Because of its monomeric nature, I-DmoI is an ideal scaffold for generating mutant enzymes with novel DNA specificities, similarly reported for homodimeric HEs, but providing single chain endonucleases instead of dimers. However, this would require the use of a mesophilic variant cleaving its substrate at temperatures of 37 degrees C and below. We have generated mesophilic mutants of I-DmoI, using a single round of directed evolution that relies on a functional assay in yeast. The effect of mutations identified in the novel proteins has been investigated. These mutations are located distant to the DNA-binding site and cause changes in the size and polarity of buried residues, suggesting that they act by destabilizing the protein. Two of the novel proteins have been produced and analyzed in vitro. Their overall structures are similar to that of the parent protein, but they are destabilized against thermal and chemical denaturation. The temperature-dependent activity profiles for the mutants shifted toward lower temperatures with respect to the wild-type activity profile. However, the most destabilized mutant was not the most active at low temperatures, suggesting that other effects, like local structural distortions and/or changes in the protein dynamics, also influence their activity. These mesophilic I-DmoI mutants form the basis for generating new variants with tailored DNA specificities.
Collapse
Affiliation(s)
- Jesús Prieto
- Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, Spanish National Cancer Center, c/Melchor Fernández Almagro 3, 28029-Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eastberg JH, McConnell Smith A, Zhao L, Ashworth J, Shen BW, Stoddard BL. Thermodynamics of DNA target site recognition by homing endonucleases. Nucleic Acids Res 2007; 35:7209-21. [PMID: 17947319 PMCID: PMC2175346 DOI: 10.1093/nar/gkm867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding.
Collapse
Affiliation(s)
- Jennifer H Eastberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025 Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Eklund JL, Ulge UY, Eastberg J, Monnat RJ. Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucleic Acids Res 2007; 35:5839-50. [PMID: 17720708 PMCID: PMC2034468 DOI: 10.1093/nar/gkm624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a yeast one-hybrid assay to isolate and characterize variants of the eukaryotic homing endonuclease I-PpoI that were able to bind a mutant, cleavage-resistant I-PpoI target or ‘homing’ site DNA in vivo. Native I-PpoI recognizes and cleaves a semi-palindromic 15-bp target site with high specificity in vivo and in vitro. This target site is present in the 28S or equivalent large subunit rDNA genes of all eukaryotes. I-PpoI variants able to bind mutant target site DNA had from 1 to 8 amino acid substitutions in the DNA–protein interface. Biochemical characterization of these proteins revealed a wide range of site–binding affinities and site discrimination. One-third of variants were able to cleave target site DNA, but there was no systematic relationship between site-binding affinity and site cleavage. Computational modeling of several variants provided mechanistic insight into how amino acid substitutions that contact, or are adjacent to, specific target site DNA base pairs determine I-PpoI site-binding affinity and site discrimination, and may affect cleavage efficiency.
Collapse
Affiliation(s)
- Jennifer L. Eklund
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Umut Y. Ulge
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer Eastberg
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Raymond J. Monnat
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- *To whom correspondence should be addressed. 206 616 7392206 543 3967
| |
Collapse
|
10
|
Prieto J, Redondo P, Padró D, Arnould S, Epinat JC, Pâques F, Blanco FJ, Montoya G. The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res 2007; 35:3262-71. [PMID: 17452357 PMCID: PMC1904291 DOI: 10.1093/nar/gkm183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Meganucleases are sequence-specific endonucleases with large cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These enzymes open novel perspectives for genome engineering in a wide range of fields, including gene therapy. A new crystal structure of the I-CreI dimer without DNA has allowed the comparison with the DNA-bound protein. The C-terminal loop displays a different conformation, which suggests its implication in DNA binding. A site-directed mutagenesis study in this region demonstrates that whereas the C-terminal helix is negligible for DNA binding, the final C-terminal loop is essential in DNA binding and cleavage. We have identified two regions that comprise the Ser138-Lys139 and Lys142-Thr143 pairs whose double mutation affect DNA binding in vitro and abolish cleavage in vivo. However, the mutation of only one residue in these sites allows DNA binding in vitro and cleavage in vivo. These findings demonstrate that the C-terminal loop of I-CreI endonuclease plays a fundamental role in its catalytic mechanism and suggest this novel site as a region to take into account for engineering new endonucleases with tailored specificity.
Collapse
Affiliation(s)
- Jesús Prieto
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Pilar Redondo
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Daniel Padró
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Sylvain Arnould
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Jean-Charles Epinat
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Frédéric Pâques
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Francisco J. Blanco
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Guillermo Montoya
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
- *To whom correspondence should be addressed. Tel:00 34 912246900; Fax: 00 34 912246976;
| |
Collapse
|
11
|
Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ, Stoddard BL. Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. J Mol Biol 2000; 300:877-87. [PMID: 10891275 DOI: 10.1006/jmbi.2000.3874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.
Collapse
Affiliation(s)
- E A Galburt
- Fred Hutchinson Cancer Research Center and the Graduate Programs in Molecular and Cell Biology and Biomolecular Structure and Design, 1100 Fairview Ave. N. A3-023, Seattle, WA, 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|