1
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
2
|
Issac J, Raveendran PS, Kunnummal M, Angelin M, Ravindran S, Basu B, Das AV. RXR agonist, Bexarotene, effectively reduces drug resistance via regulation of RFX1 in embryonic carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119510. [PMID: 37301270 DOI: 10.1016/j.bbamcr.2023.119510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Aberrant expression of multidrug resistance (MDR) proteins is one of the features of cancer stem cells (CSCs) that make them escape chemotherapy. A well-orchestrated regulation of multiple MDRs by different transcription factors in cancer cells confers this drug resistance. An in silico analysis of the major MDR genes revealed a possible regulation by RFX1 and Nrf2. Previous reports also noted that Nrf2 is a positive regulator of MDR genes in NT2 cells. But we, for the first time, report that Regulatory factor X1 (RFX1), a pleiotropic transcription factor, negatively regulates the major MDR genes, Abcg2, Abcb1, Abcc1, and Abcc2, in NT2 cells. The levels of RFX1 in undifferentiated NT2 cells were found to be very low, which significantly increased upon RA-induced differentiation. Ectopic expression of RFX1 reduced the levels of transcripts corresponding to MDRs and stemness-associated genes. Interestingly, Bexarotene, an RXR agonist that acts as an inhibitor of Nrf2-ARE signaling, could increase the transcription of RFX1. Further analysis revealed that the RFX1 promoter has binding sites for RXRα, and upon Bexarotene exposure RXRα could bind and activate the RFX1 promoter. Bexarotene, alone or in combination with Cisplatin, could inhibit many cancer/CSC-associated properties in NT2 cells. Also, it significantly reduced the expression of drug resistance proteins and made the cells sensitive towards Cisplatin. Our study proves that RFX1 could be a potent molecule to target MDRs, and Bexarotene can induce RXRα-mediated RFX1 expression, therefore, would be a better chemo-assisting drug during therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Swathy Ravindran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala 695 014, India; Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana 121001, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Javed S, Soukhtehzari S, Salmond N, Fernandes N, Williams KC. Development of an in vivo system to model breast cancer metastatic organotropism and evaluate treatment response using the chick embryo. iScience 2023; 26:106305. [PMID: 36950119 PMCID: PMC10025954 DOI: 10.1016/j.isci.2023.106305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metastatic lesions produced through the process of systemic tumor cell dissemination and growth at distant sites are challenging to treat and the primary cause of patient mortality. Developing in vivo models of metastasis with utility in evaluating molecular targets and therapeutics in a timely manner would expedite the path to therapeutic discovery. Here, we evaluated breast cancer metastasis and metastatic organotropism using the chick embryo. We developed a method to evaluate metastasis using the MDA231 cell line. Then, using cell lines with demonstrated tropism for the bone, brain, and lung, we evaluated organotropism. Rapid and robust organ-specific metastasis was modeled in the chick embryo and, importantly, recapitulated metastatic organotropism congruent to what has been demonstrated in mice. Treatment response in the metastatic setting was also evaluated and quantified. This work establishes the chick embryo as a model for studies aimed at understanding organotropism and therapeutic response in the metastatic setting.
Collapse
Affiliation(s)
- Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sepideh Soukhtehzari
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Nikki Salmond
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Nazarine Fernandes
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- Corresponding author
| |
Collapse
|
4
|
Bexarotene-induced cell death in ovarian cancer cells through Caspase-4-gasdermin E mediated pyroptosis. Sci Rep 2022; 12:11123. [PMID: 35778597 PMCID: PMC9249775 DOI: 10.1038/s41598-022-15348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Bexarotene selectively activates retinoid X receptor, which is a commonly used anticancer agent for cutaneous T-cell lymphoma. In this study, we aimed to investigate the anticancer effect of bexarotene and its underlying mechanism in ovarian cancer in vitro. The ES2 and NIH:OVACAR3 ovarian cancer cell lines were treated with 0, 5, 10, or 20 µM of bexarotene. After 24 h, cell number measurement and lactate dehydrogenase (LDH) cytotoxicity assay were performed. The effect of bexarotene on CDKN1A expression, cell cycle-related protein, cell cycle, pyroptosis, and apoptosis was evaluated. Bexarotene reduced cell proliferation in all concentrations in both the cells. At concentrations of > 10 µM, extracellular LDH activity increased with cell rupture. Treatment using 10 µM of bexarotene increased CDKN1A mRNA levels, decreased cell cycle-related protein expression, and increased the sub-G1 cell population in both cells. In ES2 cells, caspase-4 and GSDME were activated, whereas caspase-3 was not, indicating that bexarotene-induced cell death might be pyroptosis. A clinical setting concentration of bexarotene induced cell death through caspase-4-mediated pyroptosis in ovarian cancer cell lines. Thus, bexarotene may serve as a novel therapeutic agent for ovarian cancer.
Collapse
|
5
|
Hałubiec P, Łazarczyk A, Szafrański O, Bohn T, Dulińska-Litewka J. Synthetic Retinoids as Potential Therapeutics in Prostate Cancer-An Update of the Last Decade of Research: A Review. Int J Mol Sci 2021; 22:10537. [PMID: 34638876 PMCID: PMC8508817 DOI: 10.3390/ijms221910537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males. The search for appropriate therapeutic options against advanced PC has been in process for several decades. Especially after cessation of the effectiveness of hormonal therapy (i.e., emergence of castration-resistant PC), PC management options have become scarce and the prognosis is poor. To overcome this stage of disease, an array of natural and synthetic substances underwent investigation. An interesting and promising class of compounds constitutes the derivatives of natural retinoids. Synthesized on the basis of the structure of retinoic acid, they present unique and remarkable properties that warrant their investigation as antitumor drugs. However, there is no up-to-date compilation that consecutively summarizes the current state of knowledge about synthetic retinoids with regard to PC. Therefore, in this review, we present the results of the experimental studies on synthetic retinoids conducted within the last decade. Our primary aim is to highlight the molecular targets of these compounds and to identify their potential promise in the treatment of PC.
Collapse
Affiliation(s)
- Przemysław Hałubiec
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Agnieszka Łazarczyk
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Oskar Szafrański
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Torsten Bohn
- Nutrition and Health Research Group 1 A-B, Department of Population Health, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-23 1445 Strassen, Luxembourg;
| | - Joanna Dulińska-Litewka
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| |
Collapse
|
6
|
Shen D, Wang H, Zheng Q, Cheng S, Xu L, Wang M, Li GH, Xia LQ. Synergistic effect of a retinoid X receptor-selective ligand bexarotene and docetaxel in prostate cancer. Onco Targets Ther 2019; 12:7877-7886. [PMID: 31576145 PMCID: PMC6768013 DOI: 10.2147/ott.s209307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore if bexarotene (BEX) synergistically enhances docetaxel (DTX) cytotoxicity in castration-resistant prostate cancer cell lines. Materials and methods MTT assay was used to measure the cytotoxic effect of DTX and BEX on castration-resistant prostate cancer (CRPC) cell proliferation and the combination index (CI) values calculated to analyze the interaction between DTX and BEX. Flow cytometry and Western blot analysis identified the underlying mechanism for the synergistic effect of BEX and DTX. Results When mitotic slippage happens, BEX can synergistically strengthen the anti-proliferation of DTX in a way of significantly down-regulating cyclinB1 and CDK1 expression, and then arresting cells in G2 phase. Conclusion Results from this study showed that BEX-induced G2 arrest and DTX-induced mitotic arrest probably contributed to the synergistic effect of BEX and DTX.
Collapse
Affiliation(s)
- Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Liwei Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Gong H Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Li Q Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| |
Collapse
|
7
|
Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe 3O 4 nanoparticles for targeted drug delivery. Int J Nanomedicine 2019; 14:5785-5797. [PMID: 31440047 PMCID: PMC6679701 DOI: 10.2147/ijn.s213974] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/06/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: The targeted delivery of anti-cancer drugs to tumor tissue has been recognized as a promising strategy to increase their therapeutic efficacy and reduce side effects. Mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles (NH2-MSNs), a kind of nanocarrier, can passively enter tumor tissues to enhance the permeability and retention of drugs. However, NH2-MSNs do not specifically bind to cancer cells. This drawback encouraged us to develop a more efficient nanocarrier for cancer therapy. Methods: Herein, we describe the development of an effective nanocarrier based on NH2-MSNs, which were modified with hyaluronic acid on their surface (HA-MSNs) and loaded with doxorubicin (DOX). We have successfully fabricated uniform spherical HA-MSNs nanocarriers. The targeting ability of this delivery system was evaluated through specific uptake by cells and IVIS imaging. Results: DOX-HA-MSNs nanocarriers displayed more dramatic cytotoxic activity against 4T1 breast cancer cells compared to GES-1 gastric mucosa cells. In vivo results revealed that once DOX-HA-MSNs nanocarriers are exposed to an external magnetic field, they could be rapidly attracted to the magnet and effectively cross the cytoplasmic membrane via CD44 receptor-mediated transcytosis. This allows them to access the cancer cell cytoplasm and release DOX based on changes in the physiological environment. Both in vitro and in vivo results demonstrated that the HA-MSNs nanocarriers provided better therapeutic efficacy. Conclusion: The HA-MSNs nanocarriers represent an effective new paradigm to treat cancers due to active targeting to the tumor cells. Moreover, the specific uptake by the tumor effectively protects normal tissues to reduce off-target side effects. The reported findings support further investigation of HA-MSNs for cancer therapy.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| | - Xinyuan Li
- Department of Clinical Laboratory, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second Hospital, Huai’an, Jiangsu, People’s Republic of China
| | - Zeyan Xu
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang212013, People’s Republic of China
| | - Fengyi Du
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang212013, People’s Republic of China
| | - Wendi Wang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Affiliated Zhongda Hospital, Southeast University, Nanjing210009, People’s Republic of China
| | - Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| |
Collapse
|
8
|
Schierle S, Merk D. Therapeutic modulation of retinoid X receptors – SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 2019; 29:605-621. [DOI: 10.1080/13543776.2019.1643322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
10
|
Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:490-515. [PMID: 35582567 PMCID: PMC8992506 DOI: 10.20517/cdr.2019.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 04/28/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
| | - Ibrahim H. Kankia
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Yusuf Y. Deeni
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Correspondence Address: Prof. Yusuf Y Deeni, Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom. E-mail:
| |
Collapse
|
11
|
Shen D, Yu X, Wu Y, Chen Y, Li G, Cheng F, Xia L. Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev Anticancer Ther 2018. [PMID: 29521139 DOI: 10.1080/14737140.2018.1449648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Danyang Shen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Yu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqun Xia
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 2017; 8:84559-84571. [PMID: 29137448 PMCID: PMC5663620 DOI: 10.18632/oncotarget.19187] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of traditional chemotherapy treatment in cancer patients. Most studies to date have focused on strategies to reverse MDR following its development. However, agents utilizing this approach have proven to be of limited clinical use, failing to demonstrate an improvement in therapeutic efficacy with almost no significant survival benefits observed in cancer clinical trials. An alternative approach that has been applied is to prevent or delay MDR prior or early in its development. Recent investigations have shown that preventing the emergence of MDR at the onset of chemotherapy treatment, rather than reversing MDR once it has developed, may assist in overcoming drug resistance. In this review, we focus on a number of novel strategies used by small-molecule inhibitors to prevent the development of MDR. These agents hold great promise for prolonging the efficacy of chemotherapy treatment and improving the clinical outcomes of patients with cancers that are susceptible to MDR development.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Seebacher
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huirong Shi
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Quancheng Kan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhenfeng Duan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
Lee JB, Zgair A, Kim TH, Kim MG, Yoo SD, Fischer PM, Gershkovich P. Simple and sensitive HPLC-UV method for determination of bexarotene in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:73-80. [DOI: 10.1016/j.jchromb.2016.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
|
14
|
Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26048a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carbon quantum dots (CDs) as emerging carbon nano-materials have attracted tremendous attention in biomedical fields due to unique properties.
Collapse
Affiliation(s)
- M. Zhang
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - X. Zhao
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Z. Fang
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Y. Niu
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - J. Lou
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Y. Wu
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - S. Zou
- Department of Hepatosis
- The Third Hospital of Zhenjiang Affiliated to Jiangsu University
- Zhenjiang
- P. R. China
| | - S. Xia
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - M. Sun
- Department of Clinical Laboratory
- Affiliated Yancheng Hospital
- School of Medicine
- Southeast University
- Yancheng
| | - F. Du
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
- Department of Hepatosis
| |
Collapse
|
15
|
Yang X, Feng Y, Gao Y, Shen J, Choy E, Cote G, Harmon D, Zhang Z, Mankin H, Hornicek FJ, Duan Z. NSC23925 prevents the emergence of multidrug resistance in ovarian cancer in vitro and in vivo. Gynecol Oncol 2015; 137:134-42. [PMID: 25677062 DOI: 10.1016/j.ygyno.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The development of multidrug resistance (MDR) remains the significant clinical challenge in ovarian cancer therapy; however, relatively little is known about how to prevent the emergence of MDR during chemotherapy treatment. NSC23925 previously has been shown to prevent the development of MDR in osteosarcoma cells in vitro. The purpose of this study was to evaluate the effects of NSC23925 on the prevention of MDR in ovarian cancer, especially in vivo. METHODS Human ovarian cancer cells were treated with paclitaxel alone or in combination with NSC23925 in vitro and in vivo. MDR ovarian cancer cells were established both in cultured cells and mouse models. The expression levels of Pgp and MDR1 were evaluated in various selected cell sublines by Western blot and real-time PCR. Pgp activity was also determined. RESULTS Paclitaxel treated cells eventually developed MDR with overexpression of Pgp and MDR1, and with high activity of Pgp, while paclitaxel-NSC23925 co-treated cells remained sensitive to chemotherapeutic agents in both in vitro and in vivo models. There was no observed increase in expression level and activity of Pgp in paclitaxel-NSC23925 co-treated cells. Additionally, there were no changes in the sensitivity to chemotherapeutic agents, nor expression of Pgp, in cells cultured with NSC23925. CONCLUSION Our findings suggest that NSC23925 can prevent the emergence of MDR in ovarian cancer both in vitro and in vivo. The clinical use of NSC2395 at the onset of chemotherapy may prevent the development of MDR and improve the clinical outcome of patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gregory Cote
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David Harmon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhan Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J Mater Chem B 2014; 2:8361-8371. [DOI: 10.1039/c4tb01102c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Wu J, Wang H, Tang X. Rexinoid inhibits Nrf2-mediated transcription through retinoid X receptor alpha. Biochem Biophys Res Commun 2014; 452:554-9. [PMID: 25172665 DOI: 10.1016/j.bbrc.2014.08.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022]
Abstract
NF-E2 P45-related factor 2 (Nrf2) is a key transcription factor that controls genes encoding cytoprotective and detoxifying enzymes through antioxidant response elements (AREs) in their regulatory regions. We reported recently that retinoid X receptor alpha (RXRα) inhibits Nrf2 function by direct interaction with the Neh7 domain of Nrf2 in a ligand-independent manner. Here, we provide evidence that an RXRα-specific ligand, bexarotene, dose-dependently inhibits the mRNA expression of ARE-driven genes. Knock-down of RXRα by siRNA abolished the inhibitory effect of bexarotene. Conversely, the over-expression of RXRα enhanced the inhibition by bexarotene, indicating that the effect is mediated by RXRα. The inhibition by bexarotene was also found in the non-small-cell lung cancer cell line A549, which carries a dysfunctional somatic mutation of Kelch-like ECH-associated protein 1 (KEAP1), suggesting that KEAP1 is not involved. Our results demonstrate that rexinoid is able to inhibit the transcriptional activity of Nrf2, and that RXRα can repress the cytoprotection pathway in a ligand-dependent manner.
Collapse
Affiliation(s)
- Jiaguo Wu
- Division of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310058, PR China
| | - Hongyan Wang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
18
|
Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925. Br J Cancer 2014; 110:2896-904. [PMID: 24853187 PMCID: PMC4056062 DOI: 10.1038/bjc.2014.254] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022] Open
Abstract
Background: The major limitation to the success of chemotherapy in osteosarcoma is the development of multidrug resistance (MDR). Preventing the emergence of MDR during chemotherapy treatment has been a high priority of clinical and investigational oncology, but it remains an elusive goal. The NSC23925 has recently been identified as a novel and potent MDR reversal agent. However, whether NSC23925 can prevent the development of MDR in cancer is unknown. Therefore, this study aims to evaluate the effects of NSC23925 on prevention of the development of MDR in osteosarcoma. Methods: Human osteosarcoma cell lines U-2OS and Saos were exposed to increasing concentrations of paclitaxel alone or in combination with NSC23925 for 6 months. Cell sublines selected at different time points were evaluated for their drug sensitivity, drug transporter P-glycoprotein (Pgp) expression and activity. Results: We observed that tumour cells selected with increasing concentrations of paclitaxel alone developed MDR with resistance to paclitaxel and other Pgp substrates, whereas cells cultured with paclitaxel–NSC23925 did not develop MDR and cells remained sensitive to chemotherapeutic agents. Paclitaxel-resistant cells showed high expression and activity of the Pgp, whereas paclitaxel–NSC23925-treated cells did not express Pgp. No changes in IC50 and Pgp expression and activity were observed in cells grown with the NSC23925 alone. Conclusions: Our findings suggest that NSC23925 may prevent the development of MDR by specifically preventing the overexpression of Pgp. Given the significant incidence of MDR in osteosarcoma and the lack of effective agents for prevention of MDR, NSC23925 and derivatives hold the potential to improve the outcome of cancer patients with poor prognosis due to drug resistance.
Collapse
|
19
|
Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site. ACTA ACUST UNITED AC 2014; 21:596-607. [PMID: 24704507 DOI: 10.1016/j.chembiol.2014.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/22/2014] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.
Collapse
|
20
|
Synthesis and SAR study of modulators inhibiting tRXRα-dependent AKT activation. Eur J Med Chem 2013; 62:632-48. [PMID: 23434637 DOI: 10.1016/j.ejmech.2013.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
RXRα represents an intriguing and unique target for pharmacologic interventions. We recently showed that Sulindac and a designed analog could bind to RXRα and modulate its biological activity, including inhibition of the interaction of an N-terminally truncated RXRα (tRXRα) with the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K). Here we report the synthesis, testing and SAR of a series of novel analogs of Sulindac as potential modulators for inhibiting tRXRα-dependent AKT activation. A new compound 30 was identified to have improved biological activity.
Collapse
|
21
|
A phase I pharmacokinetic study of bexarotene with paclitaxel and carboplatin in patients with advanced non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol 2011; 69:825-34. [PMID: 22057853 DOI: 10.1007/s00280-011-1770-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/15/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE Preclinical data suggest that the synthetic retinoid bexarotene may be an effective chemopreventive agent and that it may act synergistically in combination with platinum-based chemotherapy. The primary objective of this study was to determine whether repeated doses of bexarotene capsules affect pharmacokinetic parameters of paclitaxel or carboplatin in patients with advanced non-small cell lung cancer. METHODS Patients received treatment with paclitaxel (200 mg/m(2)) and carboplatin to provide a target AUC of 6 mg min/mL (day 1) every 3 weeks. Continuous oral bexarotene therapy (400 mg/m(2)/day) was initiated on Day 4, and patients started lipid-lowering therapy prior to beginning chemotherapy. Blood sampling to characterize the pharmacokinetic profiles of the chemotherapeutic agents with or without bexarotene was performed during cycle 1 (without concomitant bexarotene) and during cycle 2 (with concomitant bexarotene). RESULTS An analysis of drug concentration data from 16 patients indicated that bexarotene did not affect the pharmacokinetics of paclitaxel, free carboplatin, or total carboplatin concentrations. However, both maximal plasma concentrations and total exposure of bexarotene increased by 80% in the presence of paclitaxel-carboplatin by an, as of yet, unexplained mechanism. The toxicities observed resembled those of either the chemotherapy regimen or bexarotene alone, and there was no evidence for an enhancement of any drug-related toxicity with the combined treatment. CONCLUSIONS The administration of bexarotene, paclitaxel, and carboplatin is feasible and safe; however, the increased bexarotene plasma concentrations and exposure warrant further investigation if this combination is to be utilized clinically.
Collapse
|
22
|
Fu J, Wang W, Liu YH, Lu H, Luo Y. In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on Human endothelial cells. BMC Cancer 2011; 11:227. [PMID: 21649908 PMCID: PMC3120806 DOI: 10.1186/1471-2407-11-227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/07/2011] [Indexed: 11/25/2022] Open
Abstract
Background LGD1069 (Targretin®) is a selective retinoid X receptor (RXR) ligand, which is used in patients for cutaneous T-cell lymphoma. Our published study reported that LGD1069 inhibited tumor-induced angiogenesis in non-small cell lung cancer. In present study, we found that LGD1069 suppressed the proliferation, adhesion, invasion and migration of endothelial cells directly, and affected the expression of vegf and some matrix genes. Methods Human umbilical vein endothelial cells (HUVECs) were used for in vitro study. MTT assay and Sulforhodamine B assay were used for cell viability assay; the tube formation assay was used to investigate the effect of LGD1069 on angiogenesis in vitro. In vitro adhesion, migration and invasion of HUVEC cells were analyzed by Matrigel adhesion, migration and invasion assay. Gene expressions were measured by RT-PCR and Western blot analysis. Results Our data showed here that LGD1069 inhibited the activation of TGF-β/Smad pathway significantly. Furthermore, it was demonstrated that expression of Runx2 was suppressed pronouncedly during incubation with LGD1069. Runx2 is a DNA-binding transcription factor which plays a master role in tumor-induced angiogenesis and cancer cells metastasis by interaction with the TGF-β/Smad pathway of transcriptional modulators. Conclusions Our results suggested that LGD1069 may impair angiogenic and metastatic potential induced by tumor cells through suppressing expression of Runx2 directly on human endothelial cells, which may point out new pathway through which LGD1069 display anti-angiogenic properties, and provide new molecular evidence to support LGD1069 as a potent anti-metastatic agent in cancer therapy.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pharmacology, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China.
| | | | | | | | | |
Collapse
|
23
|
Bexarotene: a promising anticancer agent. Cancer Chemother Pharmacol 2009; 65:201-5. [PMID: 19777233 DOI: 10.1007/s00280-009-1140-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Retinoids are biologically active derivatives of vitamin A, which play essential roles in embryonic or adult cell behavior modulating cell proliferation, differentiation and apoptosis. The biologic effects of retinoids are mediated by two distinct families of intracellular receptors: retinoid acid receptors (RARs)-α, -β and -γ and retinoid X receptors (RXR)-α, -β and -γ. Bexarotene is a selective RXR agonist, which exerts its effects in blocking cell cycle progression, inducing apoptosis and differentiation, preventing multidrug resistance, and inhibiting angiogenesis and metastasis, making it a promising chemopreventive agent against cancer.
Collapse
|
24
|
Adams C, McCarthy HO, Coulter JA, Worthington J, Murphy C, Robson T, Hirst DG. Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J Gene Med 2009; 11:160-8. [PMID: 19062185 DOI: 10.1002/jgm.1280] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO.) derived from donor drugs has been shown to be an effective chemosensitizer in vitro. We investigated the combination of inducible nitric oxide synthase (iNOS) gene transfer, driven by a strong constitutive promoter (cytomegalovirus; CMV) with the DNA cross-linking agent cisplatin in mouse and human tumour cell lines. METHODS Proof of principal experiments were performed in the radiation-induced fibrosarcoma-1 (RIF-1) murine cell line. Cells were transfected with constitutively expressed CMV/iNOS plasmid DNA using a cationic lipid vector, before exposure to cisplatin. In vivo efficacy was determined in an intradermal RIF-1 tumour model, with intraperitoneal administration of cisplatin. Additionally, treatment potential was investigated in various human tumour cell lines including human prostate (DU145 and PC3) and human colon (HT29 and HCT116) cancer cell lines. Experimental endpoints were established using western blot, Greiss test, clonogenic assay and tumour growth delay. RESULTS Transfection of RIF-1 tumour cells in vitro with the CMV/iNOS significantly enhanced the cytotoxicity of cisplatin (0.2-1.0 microM). In vivo transfer of CMV/iNOS by direct injection into established RIF-1 tumours caused a significant (p = 0.0027) delay in tumour growth. CMV/iNOS gene transfer in vitro resulted in the strong expression of iNOS DNA in all cell lines, and significantly increased levels of NO. in all cell lines except HCT116. CONCLUSIONS Significant chemosensitization of cisplatin cytotoxicity was observed in the presence of NO. derived from the overexpression iNOS. We conclude that p53 status of the various cell lines was unlikely to be responsible for cisplatin-induced apoptosis.
Collapse
|
25
|
Pettersson F, Hanna N, Lagodich M, Dupéré-Richer D, Couture MC, Choi C, Miller WH. Rexinoids modulate steroid and xenobiotic receptor activity by increasing its protein turnover in a calpain-dependent manner. J Biol Chem 2008; 283:21945-52. [PMID: 18544536 DOI: 10.1074/jbc.m710358200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steroid and xenobiotic receptor SXR (human pregnane X receptor) is a nuclear receptor that plays a key role in the body's detoxification response by regulating genes involved in drug metabolism and transport. SXR ligands include a wide range of compounds, which induce transcription of SXR target genes via activation of a heterodimeric transcription factor consisting of SXR and the related nuclear receptor retinoid X receptor (RXR). We investigated the effect of RXR-selective ligands, rexinoids, on SXR/RXR activity. In agreement with previous reports, we found that rexinoids are weak activators of SXR, but we also found that they can antagonize SXR activation by the potent SXR agonist rifampicin. This antagonism included suppression of rifampicin-induced expression of SXR target genes, as well as reduced binding of SXR/RXR to SXR response elements both in vivo and in vitro. Interestingly, two rexinoids, bexarotene (LGD1069/Targretin) and LG100268, caused a rapid and sustained decrease in the protein levels of both SXR and RXR. The decrease in SXR level was due to an enhanced rate of protein degradation and was dependent on calpain activity, as opposed to rexinoid-induced RXR degradation, which is mediated via the proteasome. Thus, we have demonstrated a novel, rexinoid-modulated mechanism regulating SXR protein stability, which may explain why rexinoids are only weak activators of SXR/RXR-mediated transcription, despite reports that they bind to SXR with high affinity. We suggest that the ability of rexinoids to induce degradation of both SXR and RXR, in combination with competition for binding to SXR, can also explain why rexinoids antagonize the activation of SXR by drugs like rifampicin.
Collapse
Affiliation(s)
- Filippa Pettersson
- Lady Davis Institute for Medical Research, Segal Cancer Centre of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Stordal B, Pavlakis N, Davey R. A systematic review of platinum and taxane resistance from bench to clinic: An inverse relationship. Cancer Treat Rev 2007; 33:688-703. [PMID: 17881133 DOI: 10.1016/j.ctrv.2007.07.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/19/2007] [Accepted: 07/21/2007] [Indexed: 01/13/2023]
Abstract
We undertook a systematic review of the pre-clinical and clinical literature for studies investigating the relationship between platinum and taxane resistance. Medline was searched for (1) cell models of acquired drug resistance reporting platinum and taxane sensitivities and (2) clinical trials of platinum or taxane salvage therapy in ovarian cancer. One hundred and thirty-seven models of acquired drug resistance were identified. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel and 66.7% of paclitaxel-resistant cells were sensitive to cisplatin. A similar inverse pattern was observed for cisplatin vs. docetaxel, carboplatin vs. paclitaxel and carboplatin vs. docetaxel. These associations were independent of cancer type, agents used to develop resistance and reported mechanisms of resistance. Sixty-five eligible clinical trials of paclitaxel-based salvage after platinum therapy were identified. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously recieved paclitaxel had a pooled response rate of 35.3%, n=232, compared to 22% in paclitaxel naïve patients n=1918 (p<0.01, Chi-squared). Suggesting that pre-treatment with paclitaxel may improve the response of salvage paclitaxel therapy. The response rate to paclitaxel/platinum combination regimens in platinum-sensitive ovarian cancer was 79.5%, n=88 compared to 49.4%, n=85 for paclitaxel combined with other agents (p<0.001, Chi-squared), suggesting a positive interaction between taxanes and platinum. Therefore, the inverse relationship between platinum and taxanes resistance seen in cell models is mirrored in the clinical response to these agents in ovarian cancer. An understanding of the cellular and molecular mechanisms responsible would be valuable in predicting response to salvage chemotherapy and may identify new therapeutic targets.
Collapse
Affiliation(s)
- Britta Stordal
- Bill Walsh Cancer Research Laboratories, Royal North Shore Hospital and The University of Sydney, St. Leonards, NSW 2065, Australia
| | | | | |
Collapse
|
27
|
Tooker P, Yen WC, Ng SC, Negro-Vilar A, Hermann TW. Bexarotene (LGD1069, Targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification. Cancer Res 2007; 67:4425-33. [PMID: 17483357 DOI: 10.1158/0008-5472.can-06-4495] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acquired drug resistance is a major obstacle in cancer therapy. As for many other drugs, this is also the case for gemcitabine, a nucleoside analogue with activity against non-small cell lung cancer (NSCLC). Here, we evaluate the ability of bexarotene to modulate the acquisition and maintenance of gemcitabine resistance in Calu3 NSCLC models. In the prevention model, Calu3 cells treated repeatedly with gemcitabine alone gradually developed resistance. However, with inclusion of bexarotene, the cells remained chemosensitive. RNA analysis showed a strong increase of rrm1 (ribonucleotide reductase M1) expression in the resistant cells (Calu3-GemR), a gene known to be involved in gemcitabine resistance. In addition, the expression of genes surrounding the chromosomal location of rrm1 was increased, suggesting that resistance was due to gene amplification at the chr11 p15.5 locus. Analysis of genomic DNA confirmed that the rrm1 gene copy number was increased over 10-fold. Correspondingly, fluorescence in situ hybridization analysis of metaphase chromosomes showed an intrachromosomal amplification of the rrm1 locus. In the therapeutic model, bexarotene gradually resensitized Calu3-GemR cells to gemcitabine, reaching parental drug sensitivity after 10 treatment cycles. This was associated with a loss in rrm1 amplification. Corresponding with the in vitro data, xenograft tumors generated from the resistant cells did not respond to gemcitabine but were growth inhibited when bexarotene was added to the cytotoxic agent. The data indicate that bexarotene can resensitize gemcitabine-resistant tumor cells by reversing gene amplification. This suggests that bexarotene may have clinical utility in cancers where drug resistance by gene amplification is a major obstacle to successful therapy.
Collapse
Affiliation(s)
- Patricia Tooker
- Department of Molecular Oncology, Ligand Pharmaceuticals, Inc., San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
28
|
Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 2007; 7:357-69. [PMID: 17446857 DOI: 10.1038/nrc2129] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic oleanane triterpenoids and rexinoids are two new classes of multifunctional drugs. They are neither conventional cytotoxic agents, nor are they monofunctional drugs that uniquely target single steps in signal transduction pathways. Synthetic oleanane triterpenoids have profound effects on inflammation and the redox state of cells and tissues, as well as being potent anti-proliferative and pro-apoptotic agents. Rexinoids are ligands for the nuclear receptor transcription factors known as retinoid X receptors. Both classes of agents can prevent and treat cancer in experimental animals. These drugs have unique molecular and cellular mechanisms of action and might prove to be synergistic with standard anti-cancer treatments.
Collapse
Affiliation(s)
- Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
29
|
Tang XH, Suh MJ, Li R, Gudas LJ. Cell proliferation inhibition and alterations in retinol esterification induced by phytanic acid and docosahexaenoic acid. J Lipid Res 2007; 48:165-76. [PMID: 17068359 DOI: 10.1194/jlr.m600419-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of two natural dietary retinoid X receptor (RXR) ligands, phytanic acid (PA) and docosahexaenoic acid (DHA), on proliferation and on the metabolism of retinol (vitamin A) in both cultured normal human prostate epithelial cells (PrECs) and PC-3 prostate carcinoma cells. PA and DHA inhibited the proliferation of the parental PC-3 cells and PC-3 cells engineered to overexpress human lecithin:retinol acyltransferase (LRAT) in both the absence and presence of retinol. A synthetic RXR-specific ligand also inhibited PC-3 cell proliferation, whereas all-trans retinoic acid (ATRA) did not. PA and DHA treatment increased the levels of retinyl esters (REs) in both PrECs and PC-3 cells and generated novel REs that eluted on reverse-phase HPLC at 54.0 and 50.5 min, respectively. Mass spectrometric analyses demonstrated that these novel REs were retinyl phytanate (54.0 min) and retinyl docosahexaenoate (50.5 min). Neither PA nor DHA increased LRAT mRNA levels in these cells. In addition, we demonstrate that retinyl phytanate was generated by LRAT in the presence of PA and retinol; however, retinyl docosahexaenoate was produced by another enzyme in the presence of DHA and retinol.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
30
|
Yen WC, Prudente RY, Corpuz MR, Negro-Vilar A, Lamph WW. A selective retinoid X receptor agonist bexarotene (LGD1069, targretin) inhibits angiogenesis and metastasis in solid tumours. Br J Cancer 2006; 94:654-60. [PMID: 16495926 PMCID: PMC2361207 DOI: 10.1038/sj.bjc.6602995] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study determined the influence of a retinoid X receptor agonist bexarotene on angiogenesis and metastasis in solid tumours. In the experimental lung metastasis xenograft models, treatment with bexarotene inhibited the development of the lung tumour nodule formation compared to control. In vivo angiogenesis assay utilising gelfoam sponges, bexarotene reduced angiogenesis in sponges containing vascular endothelial growth factor, epidermal growth factor and basic fibroblast growth factor to various extent. To determine the basis of these observations, human breast and non-small-cell lung cancer cells were subjected to migration and invasion assays in the presence of bexarotene. Our data showed that bexarotene decrease migration and invasiveness of tumour cells in a dose-dependent manner. Furthermore, bexarotene inhibited angiogenesis by directly inhibiting human umbilical vein endothelial cell growth and indirectly inhibiting tumour cell-mediated migration of human umbilical vein endothelial cells through Matrigel matrix. Analysis of tumour-conditioned medium indicated that bexarotene decreased the secretion of angiogenic factors and matrix metalloproteinases and increased the tissue inhibitor of matrix metalloproteinases. The ability of bexarotene to inhibit angiogenesis and metastasis was dependent on activation of its heterodimerisation partner peroxisome proliferator-activated receptor gamma. Collectively, our results suggest a role of bexarotene in treatment of angiogenesis and metastasis in solid tumours.
Collapse
Affiliation(s)
- W-C Yen
- Department of Molecular Oncology, Ligand Pharmaceuticals, Inc., San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|