1
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
2
|
Izady M, Khatami F, Ahadi Z, Roudgari H, Aghamir SMK. Updates on Overcoming Bicalutamide Resistance: A Glimpse into Resistance to a Novel Antiandrogen. ACS Pharmacol Transl Sci 2024; 7:905-914. [PMID: 38633597 PMCID: PMC11020064 DOI: 10.1021/acsptsci.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024]
Abstract
The standard androgen deprivation therapy for advanced prostate cancer includes the use of bicalutamide, which is a well-known antagonist of androgen receptors. Despite numerous benefits of the drugs in prostate cancer treatment, there is always a risk of developing a resistant phenotype, which paves the way for a more aggressive and low-survival type of prostate cancer. Over the years, many studies have investigated the candidate mechanisms of such resistance and have managed to find possible therapeutic solutions. In this Review, we shed light on the heterogeneous dynamics of progression to resistance against bicalutamide treatment, referring to the most recent studies and the approaches that have been so far discussed. This Review tries to offer a deep and comprehensive understanding about how the resistant cells become sensitive to the drug and what corresponding pathways lead to an appropriate solution for the antiandrogen resistance challenge.
Collapse
Affiliation(s)
- Mehrnaz Izady
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells Technology and Tissue Regeneration, School of Biology,
College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Fatemeh Khatami
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Zeinab Ahadi
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Hassan Roudgari
- Genomic
Research Center (GRC), Shahid Beheshti University
of Medical Sciences (SBMU), Tehran 19839-63113, Iran
- Department
of Applied Medicine, Medical School, Aberdeen
University, Aberdeen AB24 3FX, United Kingdom
| | | |
Collapse
|
3
|
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, Fraga CAM. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov 2024; 19:451-470. [PMID: 38456452 DOI: 10.1080/17460441.2024.2322990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Barrett RRG, Nash C, Diennet M, Cotnoir-White D, Doyle C, Mader S, Thomson AA, Gleason JL. Dual-function antiandrogen/HDACi hybrids based on enzalutamide and entinostat. Bioorg Med Chem Lett 2021; 55:128441. [PMID: 34767912 DOI: 10.1016/j.bmcl.2021.128441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 11/02/2022]
Abstract
The combination of androgen receptor antagonists with histone deacetylase inhibitors (HDACi) has been shown to be more effective than antiandrogens alone in halting growth of prostate cancer cell lines. Here we have designed, synthesized and assessed a series of antiandrogen/HDACi hybrids by combining structural features of enzalutamide with either SAHA or entinostat. The hybrids are demonstrated to maintain bifunctionality using a fluorometric HDAC assay and a bioluminescence resonance energy transfer (BRET) antiandrogen assay. Antiproliferative assays showed that hybrids bearing o-aminoanilide-based HDACi motifs outperformed hydroxamic acid based HDACi's. The hybrids demonstrated selectivity for epithelial cell lines vs. stromal cell lines, suggesting a potentially useful therapeutic window.
Collapse
Affiliation(s)
- Ryan R G Barrett
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Marine Diennet
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada
| | - David Cotnoir-White
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada
| | - Christopher Doyle
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada; Department of Biochemistry and Molecular Medicine, Pavillon Roger Gaudry, Université de Montréal, 2900 bd Edouard Montpetit, Montreal, QC H3T1J4, Canada
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
5
|
Lin J, Elkon J, Ricart B, Palmer E, Zevallos-Delgado C, Noonepalle S, Burgess B, Siegel R, Ma Y, Villagra A. Phase I Study of Entinostat in Combination with Enzalutamide for Treatment of Patients with Metastatic Castration-Resistant Prostate Cancer. Oncologist 2021; 26:e2136-e2142. [PMID: 34427023 DOI: 10.1002/onco.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/14/2021] [Indexed: 11/06/2022] Open
Abstract
LESSONS LEARNED Entinostat at the selected dose levels in combination with a standard dose of enzalutamide showed a promising safety profile in this small phase I study BACKGROUND: Entinostat inhibits prostate cancer (PCa) growth and suppresses Treg cell function in vitro and in vivo. METHODS This was a phase I study to explore the safety and preliminary efficacy of entinostat (3 and 5 mg orally per week) in combination with enzalutamide in castration resistant PCa (CRPC). The study was carried out in an open-label two-cohort design. Patients who had developed disease progression on or were eligible for enzalutamide were enrolled in the study. The safety profile of the combination therapy, Prostate specific antigen (PSA) levels, the pharmacokinetics of enzalutamide after entinostat administration, peripheral T-cell subtype (including Treg quantitation), and mononuclear cell (PBMC) histone H3 acetylation were analyzed. RESULTS Six patients with metastatic CRPC were enrolled. There was no noticeable increment of fatigue related to entinostat. Toxicities possibly or probably related to entinostat or the combination therapy included grade 3 anemia 1/6 (17%), grade 2 white blood cell (WBC) decrease 1/6 (17%), and other self-limiting grade 1 adverse events (AEs). Median duration of treatment with entinostat was 18 weeks. Entinostat did not affect the steady plasma concentration of enzalutamide. Increased PBMC histone H3 acetylation was observed in blood samples. No evident T-cell subtype changes were detected, including in Treg quantitation. CONCLUSION Entinostat 5 mg weekly in combination with enzalutamide showed an acceptable safety profile in this small phase I study. A planned phase II part of the trial was terminated because of sponsor withdrawal.
Collapse
Affiliation(s)
- Jianqing Lin
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jacob Elkon
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brittany Ricart
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Erica Palmer
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Christian Zevallos-Delgado
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Satish Noonepalle
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brooke Burgess
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert Siegel
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan Ma
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alejandro Villagra
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
6
|
Panobinostat penetrates the blood-brain barrier and achieves effective brain concentrations in a murine model. Cancer Chemother Pharmacol 2021; 88:555-562. [PMID: 34115161 DOI: 10.1007/s00280-021-04313-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Panobinostat, an orally bioavailable pan-HDAC inhibitor, has demonstrated potent activity in multiple malignancies, including pediatric brain tumors such as DIPG, with increased activity against H3K27M mutant cell lines. Given limited evidence regarding the CNS penetration of panobinostat, we sought to characterize its BBB penetration in a murine model. METHODS Panobinostat 15 mg/kg was administered IV to 12 CD-1 female mice. At specified time points, mice were euthanized, blood samples were collected, and brains were removed. LC-MS was performed to quantify panobinostat concentrations. Cmax and AUC were estimated and correlated with previously published pharmacokinetic analyses and reports of IC-50 values in DIPG cell lines. RESULTS Mean panobinostat plasma concentrations (ng/mL) were 27.3 ± 2.5 at 1 h, 7.56 ± 1.8 at 2 h, 1.48 ± 0.56 at 4 h, and 2.33 ± 1.18 at 7 h. Mean panobinostat brain concentrations (ng/g) were 60.5 ± 6.1 at 1 h, 42.9 ± 5.4 at 2 h, 33.2 ± 6.1 at 4 h, and 28.1 ± 4.3 at 7 h. Brain-to-plasma ratio at 1 h was 2.22 and the brain to plasma AUC ratio was 2.63. Based on the published human pharmacokinetic data, the anticipated Cmax in humans is expected to be significantly higher than the IC-50 identified in DIPG models. CONCLUSION It is expected that panobinostat would be effective in CNS tumors where the IC-50 is in the low nanomolar range. Thus, our data demonstrate panobinostat crosses the BBB and achieves concentrations above the IC-50 for DIPG and other brain tumors and should be explored further for clinical efficacy.
Collapse
|
7
|
Gao J, Tian L, Sun Y, Li W, Zhao L, Sun Y, Jing Z, Zhou L, Liu F, Zhao X. PURα mediates epithelial-mesenchymal transition to promote esophageal squamous cell carcinoma progression by regulating Snail2. Cancer Lett 2020; 498:98-110. [PMID: 33144099 DOI: 10.1016/j.canlet.2020.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common lethal cancers in the world. Dysregulation of purine-rich element binding protein alpha (PURα), which contributes to the initiation of PURΑ syndrome, is reportedly involved in the progression of multiple cancers, but its function and underlying mechanisms in ESCC progression remain unclear. Here, we first demonstrated that PURα promoted cell growth, migration and invasion in ESCC both in vitro and in vivo. An immunohistochemistry assay was then performed on 225 ESCC tissues, showing that high PURα expression was positively associated with lymph node metastasis and the AJCC stage, and the ESCC patients with positive PURα expression had worse survival. In addition, RNA sequencing implied that PURα induced epithelial-mesenchymal transition (EMT) in ESCC, which was further confirmed by qPCR, Western blotting and immunofluorescence analyses. Mechanistically, PURα enhanced the transcription of Snail2 by binding to its promoter region. Knockdown of Snail2 reversed PURα-induced EMT and inhibited the migration and invasion of ESCC cells. In conclusion, this study indicated that PURα promotes Snail2 transcriptional activity to induce EMT during ESCC progression.
Collapse
Affiliation(s)
- Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lina Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Sun Y, Gao J, Jing Z, Zhao Y, Sun Y, Zhao X. PURα Promotes the Transcriptional Activation of PCK2 in Oesophageal Squamous Cell Carcinoma Cells. Genes (Basel) 2020; 11:genes11111301. [PMID: 33142842 PMCID: PMC7692967 DOI: 10.3390/genes11111301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal gastrointestinal malignancies due to its characteristics of local invasion and distant metastasis. Purine element binding protein α (PURα) is a DNA and RNA binding protein, and recent studies have showed that abnormal expression of PURα is associated with the progression of some tumors, but its oncogenic function, especially in ESCC progression, has not been determined. Based on the bioinformatic analysis of RNA-seq and ChIP-seq data, we found that PURα affected metabolic pathways, including oxidative phosphorylation and fatty acid metabolism, and we observed that it has binding peaks in the promoter of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). Meanwhile, PURα significantly increased the activity of the PCK2 gene promoter by binding to the GGGAGGCGGA motif, as determined though luciferase assay and ChIP-PCR/qPCR. The results of Western blotting and qRT-PCR analysis showed that PURα overexpression enhances the protein and mRNA levels of PCK2 in KYSE510 cells, whereas PURα knockdown inhibits the protein and mRNA levels of PCK2 in KYSE170 cells. In addition, measurements of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) indicated that PURα promoted the metabolism of ESCC cells. Taken together, our results help to elucidate the molecular mechanism by which PURα activates the transcription and expression of PCK2, which contributes to the development of a new therapeutic target for ESCC.
Collapse
|
9
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
10
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Ferrari AC. Reversing resistance to antiandrogens with a histone deacetylase inhibitor. Oncotarget 2018; 9:37284-37285. [PMID: 30647867 PMCID: PMC6324663 DOI: 10.18632/oncotarget.26464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anna C Ferrari
- Anna C. Ferrari: Visiting Professor, Division of Medical Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
12
|
Ferrari AC, Alumkal JJ, Stein MN, Taplin ME, Babb J, Barnett ES, Gomez-Pinillos A, Liu X, Moore D, DiPaola R, Beer TM. Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 25:52-63. [PMID: 30224345 DOI: 10.1158/1078-0432.ccr-18-1589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assesses the action of panobinostat, a histone deacetylase inhibitor (HDACI), in restoring sensitivity to bicalutamide in a castration-resistant prostate cancer (CRPC) model and the efficacy and safety of the panobinostat/bicalutamide combination in CRPC patients resistant to second-line antiandrogen therapy (2ndLAARx). PATIENTS AND METHODS The CWR22PC xenograft and isogenic cell line were tested for drug interactions on tumor cell growth and on the androgen receptor (AR), AR-splice variant7, and AR targets. A phase I trial had a 3 × 3 panobinostat dose-escalation design. The phase II study randomized 55 patients to panobinostat 40 mg (A arm) or 20 mg (B arm) triweekly ×2 weeks with bicalutamide 50 mg/day in 3-week cycles. The primary endpoint was to determine the percentage of radiographic progression-free (rPF) patients at 36 weeks versus historic high-dose bicalutamide. RESULTS In the model, panobinostat/bicalutamide demonstrated synergistic antitumor effect while reducing AR activity. The dose-limiting toxicity was not reached. The probability of remaining rPF exceeded protocol-specified 35% in the A arm and 47.5% and 38.5% in the B arm. The probabilities of remaining rPF were 47.5% in the A arm and 38.5% in the B arm, exceeding the protocol-specified threshold of 35%. A arm/B arm: adverse events (AE), 62%/19%; treatment stopped for AEs, 27.5%/11.5%; dose reduction required, 41%/4%; principal A-arm grade ≥3 AEs, thrombocytopenia (31%) and fatigue (14%). CONCLUSIONS The 40 mg panobinostat/bicalutamide regimen increased rPF survival in CRPC patients resistant to 2ndLAARx. Panobinostat toxicity was tolerable with dose reductions. Epigenetic HDACI therapy reduces AR-mediated resistance to bicalutamide in CRPC models with clinical benefit in patients. The combination merits validation using a second-generation antiandrogen.
Collapse
Affiliation(s)
- Anna C Ferrari
- Icahn School of Medicine Mount Sinai, New York, New York.
| | | | - Mark N Stein
- Columbia University Medical Center, New York, New York
| | | | - James Babb
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ethan S Barnett
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | - Xiaomei Liu
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Dirk Moore
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Robert DiPaola
- University of Kentucky College of Medicine, Lexington, Kentucky
| | | |
Collapse
|
13
|
Kelm RJ, Lamba GS, Levis JE, Holmes CE. Characterization of purine-rich element binding protein B as a novel biomarker in acute myelogenous leukemia prognostication. J Cell Biochem 2017; 119:2073-2083. [PMID: 28834593 DOI: 10.1002/jcb.26369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematologic cancer characterized by infiltration of proliferative, clonal, abnormally differentiated cells of myeloid lineage in the bone marrow and blood. Malignant cells in AML often exhibit chromosomal and other genetic or epigenetic abnormalities that are useful in prognostic risk assessment. In this study, the relative expression and novel single-stranded DNA (ssDNA) binding function of purine-rich element binding proteins A and B (Purα and Purβ) were systematically evaluated in established leukemia cell lines and in lineage committed myeloid cells isolated from patients diagnosed with a hematologic malignancy. Western blotting revealed that Purα and Purβ are markedly elevated in CD33+ /CD66b+ cells from AML patients compared to healthy subjects and to patients with other types of myeloid cell disorders. Results of in silico database analysis of PURA and PURB mRNA expression during hematopoiesis in conjunction with the quantitative immunoassay of the ssDNA-binding activities of Purα and Purβ in transformed leukocyte cell lines pointed to Purβ as the more distinguishing biomarker of myeloid cell differentiation status. Purβ ssDNA-binding activity was significantly increased in myeloid cells from AML patients but not from individuals with other myeloid-related diseases. The highest levels of Purβ activity were detected in myeloid cells from primary AML patients and from AML patients displaying other risk factors forecasting a poor prognosis. Collectively, these findings suggest that the enhanced ssDNA-binding activity of Purβ in transformed myeloid cells may serve as a unique and measurable phenotypic trait for improving prognostic risk stratification in AML.
Collapse
Affiliation(s)
- Robert J Kelm
- Division of Cardiovascular Medicine, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| | - Gurpreet S Lamba
- Division of Hematology/Oncology, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| | - Jamie E Levis
- Translational Research Laboratory, University of Vermont Cancer Center, Burlington, Vermont
| | - Chris E Holmes
- Division of Hematology/Oncology, Department of Medicine, University of Vermont, Robert Larner, M. D. College of Medicine, Burlington, Vermont
| |
Collapse
|
14
|
Faleiro I, Leão R, Binnie A, de Mello RA, Maia AT, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget 2017; 8:12484-12500. [PMID: 28036257 PMCID: PMC5355359 DOI: 10.18632/oncotarget.14226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023] Open
Abstract
Epigenetic dysregulation is one of many factors that contribute to cancer development and progression. Numerous epigenetic alterations have been identified in urologic cancers including histone modifications, DNA methylation changes, and microRNA expression. Since these changes are reversible, efforts are being made to develop epigenetic drugs that restore the normal epigenetic patterns of cells, and many clinical trials are already underway to test their clinical potential. In this review we analyze multiple clinical trials (n=51) that test the efficacy of these drugs in patients with urologic cancers. The most frequently used epigenetic drugs were histone deacetylase inhibitors followed by antisense oligonucleotides, DNA methyltransferase inhibitors and histone demethylase inhibitors, the last of which are only being tested in prostate cancer. In more than 50% of the clinical trials considered, epigenetic drugs were used as part of combination therapy, which achieved the best results. The epigenetic regulation of some cancers is still matter of research but will undoubtedly open a window to new therapeutic approaches in the era of personalized medicine. The future of therapy for urological malignancies is likely to include multidrug regimens in which epigenetic modifying drugs will play an important role.
Collapse
Affiliation(s)
- Inês Faleiro
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ricardo Leão
- Department of Surgery, Princess Margaret Cancer Center, Division of Urology, University of Toronto, Toronto, Canada
- Renal Transplantation and Urology Service, Coimbra University Hospital Center EPE, Faculty of Medicine, University of Coimbra, Portugal
| | - Alexandra Binnie
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ramon Andrade de Mello
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ana-Teresa Maia
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| |
Collapse
|
15
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
16
|
HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 2015; 35:3781-95. [PMID: 26640144 PMCID: PMC4896852 DOI: 10.1038/onc.2015.444] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
PI3K/AKT and RAS/MAPK pathway co-activation in the prostate epithelium promotes both epithelial-mesenchymal transition (EMT) and metastatic castration-resistant prostate cancer (mCRPC), which is currently incurable. To study the dynamic regulation of the EMT process, we developed novel genetically-defined cellular and in vivo model systems from which epithelial, EMT, and mesenchymal-like tumor cells with Pten deletion and Kras activation can be isolated. When cultured individually, each population has the capacity to regenerate all three tumor cell populations, indicative of epithelial-mesenchymal plasticity. Despite harboring the same genetic alterations, mesenchymal-like tumor cells are resistant to PI3K and MAPK pathway inhibitors, suggesting that epigenetic mechanisms may regulate the EMT process, as well as dictate the heterogeneous responses of cancer cells to therapy. Among differentially expressed epigenetic regulators, the chromatin remodeling protein HMGA2 is significantly upregulated in EMT and mesenchymal-like tumors cells, as well as in human mCRPC. Knockdown of HMGA2, or suppressing HMGA2 expression with the histone deacetylase (HDAC) inhibitor LBH589, inhibits epithelial-mesenchymal plasticity and stemness activities in vitro and dramatically reduces tumor growth and metastasis in vivo through successful targeting of EMT and mesenchymal-like tumor cells. Importantly, LBH589 treatment in combination with castration prevents mCRPC development and significantly prolongs survival following castration by enhancing p53 and AR acetylation and in turn sensitizing castration-resistant mesenchymal-like tumor cells to ADT. Taken together, these findings demonstrate that cellular plasticity is regulated epigenetically, and that mesenchymal-like tumor cell populations in mCRPC that are resistant to conventional and targeted therapies can be effectively treated with the epigenetic inhibitor LBH589.
Collapse
|
17
|
Hay CW, Hunter I, MacKenzie A, McEwan IJ. An Sp1 Modulated Regulatory Region Unique to Higher Primates Regulates Human Androgen Receptor Promoter Activity in Prostate Cancer Cells. PLoS One 2015; 10:e0139990. [PMID: 26448047 PMCID: PMC4598089 DOI: 10.1371/journal.pone.0139990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/20/2015] [Indexed: 01/02/2023] Open
Abstract
Androgen receptor (AR) mediated signalling is necessary for normal development of the prostate gland and also drives prostate cancer (PCa) cell growth and survival, with many studies showing a correlation between increased receptor levels and therapy resistance with progression to fatal castrate recurrent PCa (CRPC). Although it has been held for some time that the transcription factor Sp1 is the main stimulator of AR gene transcription, comprehensive knowledge of the regulation of the AR gene remains incomplete. Here we describe and characterise in detail two novel active regulatory elements in the 5’UTR of the human AR gene. Both of these elements contain overlapping binding sites for the positive transcription factor Sp1 and the repressor protein pur-α. Aberrant cell signalling is characteristic of PCa and the transcriptional activity of the AR promoter in PCa cells is dependent upon the relative amounts of the two transcription factors. Together with our corroboration of the dominant role of Sp1, the findings support the rationale of targeting this transcription factor to inhibit tumour progression. This should be of particular therapeutic relevance in CRPC where the levels of the repressor pur-α are reduced.
Collapse
Affiliation(s)
- Colin W. Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alasdair MacKenzie
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Lin J, Wang C, Kelly WK. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions. Semin Oncol 2013; 40:393-401. [PMID: 23806502 DOI: 10.1053/j.seminoncol.2013.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further.
Collapse
Affiliation(s)
- Jianqing Lin
- Department of Medical Oncology, Jefferson Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
19
|
A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 2013; 72:537-44. [PMID: 23820963 DOI: 10.1007/s00280-013-2224-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/21/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE Panobinostat, a pan-deacetylase inhibitor, increases acetylation of proteins associated with growth and survival of malignant cells. This phase 2 study evaluated the efficacy of intravenous (IV) panobinostat in patients with castration-resistant prostate cancer (CRPC) who had previously received chemotherapy. The primary end point was 24-week progression-free survival. Secondary end points included safety, tolerability, and the proportion of patients with a prostate-specific antigen (PSA) decline. METHODS IV panobinostat (20 mg/m(2)) was administered to patients on days 1 and 8 of a 21-day cycle. Tumor response was assessed by imaging every 12 weeks (4 cycles) according to modified response evaluation criteria in solid tumors (Scher et al. in Clin Cancer Res 11:5223-5232, 23), and PSA response was defined as a 50 % decrease from baseline maintained for ≥4 weeks. Safety monitoring was routinely performed and included electrocardiogram monitoring. RESULTS Of 35 enrolled patients, four (11.4 %) were alive without progression of disease at 24 weeks. PSA was evaluated in 34 (97.1 %) patients: five (14.3 %) patients demonstrated a decrease in PSA but none ≥50 %; one patient (2.9 %) had carcinoembryonic antigen as a marker of his prostate cancer, which declined by 43 %. Toxicities regardless of relationship to panobinostat included fatigue (62.9 %), thrombocytopenia (45.7 %), nausea (51.4 %), and decreased appetite (37.1 %). CONCLUSIONS Despite promising preclinical data and scientific rationale, treatment with IV panobinostat did not show a sufficient level of clinical activity to pursue further investigation as a single agent in CRPC.
Collapse
|
20
|
Liu X, Gomez-Pinillos A, Loder C, Carrillo-de Santa Pau E, Qiao R, Unger PD, Kurek R, Oddoux C, Melamed J, Gallagher RE, Mandeli J, Ferrari AC. KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1007-16. [PMID: 22819534 DOI: 10.1016/j.ajpath.2012.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/14/2012] [Accepted: 06/07/2012] [Indexed: 01/10/2023]
Abstract
Inactivation of the transcription factor/tumor suppressor Krüppel-like factor 6 (KLF6) has been described in prostate cancer (PC). This study investigated the prevalence and significance of KLF6 exon 2 mutations and splice variants (SVs) in different stages of human PC progression. By using laser-capture microdissection and recombinant clone isolation of DNA sequences to enhance sensitivity, base changes were found in 20 (24.7%) of 81 PC tissues versus 1 (4%) of 25 normal prostate tissues (P = 0.02). Of 26 base changes, 54% produced nonsynonymous mutations. Only three mutations had driver characteristics (PCs, 4%; NPs, 0%). By using microdissection of fresh-frozen tissues and recombinant isolation of RNA sequences, SVs were found in 39 (75%) of 52 PCs and in 10 (45%) of 22 NPs (P = 0.01). Sixteen different SVs, including 13 unique SVs, were identified that used cryptic splicing sites and encoded nonfunctional KLF6 proteins. PCs that had survived hormone (androgen)-deprivation therapy (n = 21) had a significantly higher (P < 0.05) incidence, number, and expression level of nonfunctional SVs than either NPs (n = 22) or hormone-naïve PCs (n = 25). Forced expression of nonfunctional SVs conferred a survival advantage of androgen-dependent LNCaP cells under castration-simulated culture conditions. Together, these data suggest that decreased availability of functional KLF6 contributes to clinical PC progression. This decrease arises infrequently by somatic mutation and more commonly by the acquisition of SVs that provide a survival advantage under castrate conditions, enabling resistance to hormone therapy.
Collapse
Affiliation(s)
- XiaoMei Liu
- Department of Medicine, New York University Cancer Institute, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.
Collapse
|
22
|
Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 2011; 7:263-83. [PMID: 21345145 PMCID: PMC3127396 DOI: 10.2217/fon.11.2] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) regulate the acetylation of a variety of histone and nonhistone proteins, controlling the transcription and regulation of genes involved in cell cycle control, proliferation, survival, DNA repair and differentiation. Unsurprisingly, HDAC expression is frequently altered in hematologic and solid tumor malignancies. Two HDAC inhibitors (vorinostat and romidepsin) have been approved by the US FDA for the treatment of cutaneous T-cell lymphoma. As single agents, treatment with HDAC inhibitors has demonstrated limited clinical benefit for patients with solid tumors, prompting the investigation of novel treatment combinations with other cancer therapeutics. In this article, the rationales and clinical progress of several combinations with HDAC inhibitors are presented, including DNA-damaging chemotherapeutic agents, radiotherapy, hormonal therapies, DNA methyltransferase inhibitors and various small-molecule inhibitors. The future application of HDAC inhibitors as a treatment for cancer is discussed, examining current hurdles to overcome before realizing the potential of this new approach.
Collapse
Affiliation(s)
- K Ted Thurn
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Scott Thomas
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Amy Moore
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
| | - Pamela N Munster
- Department of Medicine, Hematology/Oncology Division. University of California, San Francisco, CA, USA
- Author for correspondence: 1600 Divisadero St, Room A722, Box 1770, San Francisco, CA 94115, USA Tel.: +1 415 885 7810 Fax: +1 415 353 7779
| |
Collapse
|
23
|
Pettazzoni P, Pizzimenti S, Toaldo C, Sotomayor P, Tagliavacca L, Liu S, Wang D, Minelli R, Ellis L, Atadja P, Ciamporcero E, Dianzani MU, Barrera G, Pili R. Induction of cell cycle arrest and DNA damage by the HDAC inhibitor panobinostat (LBH589) and the lipid peroxidation end product 4-hydroxynonenal in prostate cancer cells. Free Radic Biol Med 2011; 50:313-22. [PMID: 21078383 DOI: 10.1016/j.freeradbiomed.2010.11.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/18/2010] [Accepted: 11/08/2010] [Indexed: 11/21/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising antineoplastic agents for the treatment of cancer. Here we report that the lipid peroxidation end product 4-hydroxynonenal (HNE) significantly potentiates the anti-tumor effects of the HDAC inhibitor panobinostat (LBH589) in the PC3 prostate cancer cell model. Panobinostat and HNE inhibited proliferation of PC3 cells and the combination of the two agents resulted in a significant combined effect. Cell cycle analysis revealed that both single agents and, to a greater extent, their combined treatment induced G2/M arrest, but cell death occurred in the combined treatment only. Furthermore, HNE and, to a greater extent, the combined treatment induced dephosphorylation of Cdc2 leading to progression into mitosis as confirmed by α-tubulin/DAPI staining and phospho-histone H3 (Ser10) analysis. To evaluate possible induction of DNA damage we utilized the marker phosphorylated histone H2A.X. Results showed that the combination of panobinostat and HNE induced significant DNA damage concomitant with the mitotic arrest. Then, by using androgen receptor (AR)-expressing PC3 cells we observed that the responsiveness to HNE and panobinostat was independent of the expression of functional AR. Taken together, our data suggest that HNE potentiates the antitumoral effect of the HDACI panobinostat in prostate cancer cells.
Collapse
Affiliation(s)
- Piergiorgio Pettazzoni
- Department of Medicine and Experimental Oncology, Section of General Pathology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|