1
|
Tsakiridis EE, Ahmadi E, Gautam J, Hannah She YR, Fayyazi R, Lally JS, Wang S, Di Pastena F, Valvano CM, Del Rosso D, Biziotis OD, Meyers B, Muti P, Tsakiridis T, Steinberg GR. Salsalate improves the anti-tumor efficacy of lenvatinib in MASH-driven hepatocellular carcinoma. JHEP Rep 2025; 7:101354. [PMID: 40276482 PMCID: PMC12018114 DOI: 10.1016/j.jhepr.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of hepatocellular carcinoma (HCC) worldwide. The complex microenvironment of these tumors, characterized by metabolic dysfunction, hypoxia, steatosis, and fibrosis, limits the effectiveness of standard-of-care therapies, such as the multi-tyrosine kinase inhibitor lenvatinib (LEN). Salsalate (SAL), is a rheumatoid arthritis therapy that enhances fatty acid oxidation and reduces de novo lipogenesis, fibrosis and cell proliferation pathways. We hypothesize that addition of SAL could improve the efficacy of LEN in MASH-HCC. Methods We assessed the efficacy of combination therapy using clinically relevant concentrations of LEN and SAL in human HCC cell models, orthotopic xenograft and MASH-HCC mouse models. In addition, assays assessing fatty acid oxidation and lipogenesis, protein immunoblotting and RNA-sequencing were used to understand mechanisms involved. Results LEN + SAL synergistically suppressed the proliferation and clonogenic survival of cells (p ≤0.0001), prolonged survival in an orthotopic xenograft model (p = 0.02), and reduced angiogenesis, fibrosis, and steatosis (p ≤0.05) in a MASH-HCC model. These effects were associated with activation of AMPK and inhibition of the mTOR-HIF1α and Erk1/2 signaling pathways. RNA-sequencing analysis in both Hep3B cells and livers of the MASH-HCC mouse model revealed that SAL enhanced fatty acid oxidation and suppressed fibrosis and cell cycle progression, while LEN reduced angiogenesis with regulatory network analysis, suggesting a potential role for activating transcription factor 3 (ATF3) and ETS-proto-oncogene-1 (ETS-1). Conclusions These data indicate that combining LEN and SAL, which exert distinct effects leading to improvements in the liver microenvironment (steatosis, angiogenesis, and fibrosis) and inhibition of tumor proliferation, may have therapeutic potential for MASH-driven HCC. Impact and implications Although rates of MASH-HCC are on the rise globally, standard-of-care multi-tyrosine kinase inhibitors and immunotherapy have limited efficacy in this HCC etiology. Metabolic targeting with SAL inhibits cancer growth kinetics while also alleviating drivers of MASH by increasing fatty acid oxidation and reducing de novo lipogenesis and fibrosis. Combined LEN and SAL improved survival and MASH-HCC pathology in mouse models without adverse effects. Given that SAL is a safe, economical, and approved medication, this concept holds great translational potential that could provide a new treatment avenue for patients with unresected MASH-HCC.
Collapse
Affiliation(s)
- Evangelia E. Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Yi Ran Hannah She
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Russta Fayyazi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - James S.V. Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Simon Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Fiorella Di Pastena
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Celina M. Valvano
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Daniel Del Rosso
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Brandon Meyers
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Paola Muti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| |
Collapse
|
2
|
Kanhai AA, Sánchez-López E, Kuipers TB, van Klinken JB, Dijkstra KL, van der Veen I, Baelde HJ, Song X, Pei Y, Mei H, Leonhard WN, Mayboroda OA, Peters DJ. Short salsalate administration affects cell proliferation, metabolism, and inflammation in polycystic kidney disease. iScience 2023; 26:108278. [PMID: 38026227 PMCID: PMC10665819 DOI: 10.1016/j.isci.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.
Collapse
Affiliation(s)
- Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Sánchez-López
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B. Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan B. van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Laboratory Genetic Metabolic Diseases of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kyra L. Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge van der Veen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J. Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorien J.M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Interactions of Analgesics with Cisplatin: Modulation of Anticancer Efficacy and Potential Organ Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010046. [PMID: 35056355 PMCID: PMC8781901 DOI: 10.3390/medicina58010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness, CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy, including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral nerves causing severely painful neuropathy. The latter, among other pains patients feel during chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic analgesics, could be used according to the severity of pain. Administered analgesics might modulate CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand, some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP, augmenting its potentially hazardous effects on organ impairment. This article offers an overview of the reported literature on the interactions between analgesics and CDDP, paying special attention to possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.
Collapse
|
5
|
The Antimalaria Drug Artesunate Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication via Activating AMPK and Nrf2/HO-1 Signaling Pathways. J Virol 2021; 96:e0148721. [PMID: 34787456 DOI: 10.1128/jvi.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide. Currently, vaccine strategies provide limited protection against PRRSV transmission, and no effective drug is commercially available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV pandemics. This study showed that artesunate (AS), one of the antimalarial drugs, potently suppressed PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs) at micromolar concentrations. Furthermore, we demonstrated that this suppression was closely associated with AS-activated AMPK (energy homeostasis) and Nrf2/HO-1 (inflammation) signaling pathways. AS treatment promoted p-AMPK, Nrf2 and HO-1 expression, and thus inhibited PRRSV replication in Marc-145 and PAM cells in a time- and dose-dependent manner. These effects of AS were reversed when AMPK or HO-1 gene was silenced by siRNA. In addition, we demonstrated that AMPK works upstream of Nrf2/HO-1 as its activation by AS is AMPK-dependent. Adenosine phosphate analysis showed that AS activates AMPK via improving AMP/ADP:ATP ratio rather than direct interaction with AMPK. Altogether, our findings indicate that AS could be a promising novel therapeutics for controlling PRRSV and that its anti-PRRSV mechanism, which involves the functional link between energy homeostasis and inflammation suppression pathways, may provide opportunities for developing novel antiviral agents. Importance Porcine reproductive and respiratory syndrome virus (PRRSV) infections have been continuously threatened the pork industry worldwide. Vaccination strategies provide very limited protection against PRRSV infection, and no effective drug is commercially available. We show that artesunate (AS), one of the antimalarial drugs, is a potent inhibitor against PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs). Furthermore, we demonstrate that AS inhibits PRRSV replication via activation of AMPK-dependent Nrf2/HO-1 signaling pathways, revealing a novel link between energy homeostasis (AMPK) and inflammation suppression (Nrf2/HO-1) during viral infection. Therefore, we believe that AS may be a promising novel therapeutics for controlling PRRSV, and its anti-PRRSV mechanism may provide a potential strategy to develop novel antiviral agents.
Collapse
|
6
|
Tsakiridis EE, Broadfield L, Marcinko K, Biziotis OD, Ali A, Mekhaeil B, Ahmadi E, Singh K, Mesci A, Zacharidis PG, Anagnostopoulos AE, Berg T, Muti P, Steinberg GR, Tsakiridis T. Combined metformin-salicylate treatment provides improved anti-tumor activity and enhanced radiotherapy response in prostate cancer; drug synergy at clinically relevant doses. Transl Oncol 2021; 14:101209. [PMID: 34479029 PMCID: PMC8411238 DOI: 10.1016/j.tranon.2021.101209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
Combined metformin + salicylate treatment has improved anti-tumor efficacy in prostate cancer. At clinically achievable doses, it induces increased metabolic stress and sensitizes tumors to radiation. Metformin + salicylate blocks pathways of de novo lipogenesis and protein synthesis. In combination with radiation suppresses HIF1a and DNA replication. This work supports clinical investigation of metformin + salicylate in combination with radiotherapy.
Background There is need for well-tolerated therapies for prostate cancer (PrCa) secondary prevention and to improve response to radiotherapy (RT). The anti-diabetic agent metformin (MET) and the aspirin metabolite salicylate (SAL) are shown to activate AMP-activated protein kinase (AMPK), suppress de novo lipogenesis (DNL), the mammalian target of rapamycin (mTOR) pathway and reduce PrCa proliferation in-vitro. The purpose of this study was to examine whether combined MET+SAL treatment could provide enhanced PrCa tumor suppression and improve response to RT. Methods Androgen-sensitive (22RV1) and resistant (PC3, DU-145) PrCa cells and PC3 xenografts were used to examine whether combined treatment with MET+SAL can provide improved anti-tumor activity compared to each agent alone in non-irradiated and irradiated PrCa cells and tumors. Mechanisms of action were investigated with analysis of signaling events, mitochondria respiration and DNL activity assays. Results We observed that PrCa cells are resistant to clinically relevant doses of MET. Combined MET + SAL treatment provides synergistic anti-proliferative activity at clinically relevant doses and enhances the anti-proliferative effects of RT. This was associated with suppression of oxygen consumption rate (OCR), activation of AMPK, suppression of acetyl-CoA carboxylase (ACC)-DNL and mTOR-p70s6k/4EBP1 and HIF1α pathways. MET + SAL reduced tumor growth in non-irradiated tumors and enhanced the effects of RT. Conclusion MET+SAL treatment suppresses PrCa cell proliferation and tumor growth and enhances responses to RT at clinically relevant doses. Since MET and SAL are safe, widely-used and inexpensive agents, these data support the investigation of MET+SAL in PrCa clinical trials alone and in combination with RT.
Collapse
Affiliation(s)
- Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lindsay Broadfield
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Amr Ali
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Bassem Mekhaeil
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada
| | - Panayiotis G Zacharidis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Alexander E Anagnostopoulos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada.
| |
Collapse
|
7
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
8
|
Song YC, Lee SE, Jin Y, Park HW, Chun KH, Lee HW. Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Mol Cells 2020; 43:763-773. [PMID: 32759466 PMCID: PMC7528682 DOI: 10.14348/molcells.2020.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.
Collapse
Affiliation(s)
- Yae Chan Song
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Young Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
10
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|