1
|
Huang K, Fang J, Xiao S, Wang W, Zhang G, Sun W, Shuai L, Bi H. Transcranial alternating current stimulation inhibits ferroptosis and promotes functional recovery in spinal cord injury via the cGMP-PKG signalling pathway. Life Sci 2025; 362:123341. [PMID: 39740757 DOI: 10.1016/j.lfs.2024.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
AIMS This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI). MAIN METHODS By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model. Motor function outcomes were measured using the Basso-Beattie-Bresnahan (BBB) scoring scale and footprint analysis. To thoroughly understand the impact of tACS, we conducted a series of histological evaluations two weeks post-injury. These included q-PCR, enzyme-linked immunosorbent assays (ELISA), transmission electron microscopy (TEM), immunofluorescence staining, and Western blotting. The mechanisms underlying the role of tACS will be elucidated through comprehensive analyses. KEY FINDINGS Simultaneously, tACS reduced the levels of reactive oxygen species (ROS), Fe, and malondialdehyde (MDH), and increased the levels of glutathione (GSH) after SCI. Additionally, tACS significantly enhanced motor function, reduced fibrotic scar tissue formation, and provided substantial neuroprotection. It also contributed to the restoration of the blood-spinal cord barrier and supported the regeneration of essential neural components, including axons, myelin, and synapses. The cGMP-PKG signalling pathway was identified as playing a crucial role in these processes. SIGNIFICANCE Our findings suggest that tACS inhibits ferroptosis and necrotic degeneration by modulating the cGMP-PKG signalling pathway. This highlights the importance of tACS in promoting neural repair and functional recovery in SCI patients. Overall, tACS emerges as a highly effective and cost-efficient rehabilitative approach for SCI, offering new hope for improving patient outcomes.
Collapse
Affiliation(s)
- Ke Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Fang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shining Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wansong Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guodong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Weiming Sun
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Lang Shuai
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Haidi Bi
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Ghezzi AC, Passos GR, de Oliveira MG, Oliveira AL, Assis-Mendonça GR, de Mello GC, Antunes E, Monica FZ. A 2-week treatment with 5-azacytidine improved the hypercontractility state in prostate from obese mice: Role of the nitric oxide-cyclic guanosine monophosphate signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13851. [PMID: 38452757 DOI: 10.1111/1440-1681.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.
Collapse
Affiliation(s)
- Ana Carolina Ghezzi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Akila Lara Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Guilherme Rossi Assis-Mendonça
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
- National Academy of Medicine, Young Leadership Physician Program, Rio de Janeiro, Brazil
| | - Glaucia Coelho de Mello
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
3
|
Zeng J, Chen J, Li M, Zhong C, Liu Z, Wang Y, Li Y, Jiang F, Fang S, Zhong W. Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer. Front Pharmacol 2023; 14:1191129. [PMID: 37292153 PMCID: PMC10244677 DOI: 10.3389/fphar.2023.1191129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive stage of prostate cancer, and non-mutational epigenetic reprogramming plays a critical role in its progression. Super enhancers (SE), epigenetic elements, are involved in multiple tumor-promoting signaling pathways. However, the SE-mediated mechanism in mCRPC remains unclear. Methods: SE-associated genes and transcription factors were identified from a cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in the GSE35988 dataset were identified. What's more, a recurrence risk prediction model was constructed based on the overlapping genes (termed SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell analysis was performed to visualize cell subpopulations expressing the key SE-associated DEGs. Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were identified. 142 overlapping SE-associated DEGs showed excellent performance in recurrence prediction. Time-dependent receiver operating characteristic (ROC) curve analysis showed strong predictive power at 1 year (0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has also been validated in external datasets. In addition, FKBP5 activity was significantly inhibited by JQ1. Conclusion: We present a landscape of SE and their associated genes in mCPRC, and discuss the potential clinical implications of these findings in terms of their translation to the clinic.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Maozhang Li
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhen Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuejiao Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Funeng Jiang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shumin Fang
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Naiyila X, Li J, Huang Y, Chen B, Zhu M, Li J, Chen Z, Yang L, Ai J, Wei Q, Liu L, Cao D. A Novel Insight into the Immune-Related Interaction of Inflammatory Cytokines in Benign Prostatic Hyperplasia. J Clin Med 2023; 12:jcm12051821. [PMID: 36902608 PMCID: PMC10003138 DOI: 10.3390/jcm12051821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common male condition that impacts many men's quality of life by generating lower urinary tract symptoms (LUTS). In recent years, inflammation has become very common in the prostate, and BPH with inflammation has a higher International Prostate Symptom Score (IPSS) score and an enlarged prostate. Chronic inflammation leads to tissue damage and the release of pro-inflammatory cytokines, which play an important role in the pathogenesis of BPH. We will focus on current advancements in pro-inflammatory cytokines in BPH, as well as the future of pro-inflammatory cytokine research.
Collapse
Affiliation(s)
- Xiaokaiti Naiyila
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (D.C.); Tel./Fax: +86-28-8542-2451 (L.L. & D.C.)
| |
Collapse
|
5
|
Zabbarova IV, Ikeda Y, Kozlowski MG, Tyagi P, Birder L, Chakrabarty B, Perera S, Dhir R, Straub AC, Sandner P, Andersson KE, Drake M, Fry CH, Kanai A. Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator. J Pathol 2022; 256:442-454. [PMID: 34936088 PMCID: PMC8930559 DOI: 10.1002/path.5859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 09/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Irina V. Zabbarova
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Youko Ikeda
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Mark G. Kozlowski
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- University of Pittsburgh, Department of Urology, Pittsburgh, PA, USA
| | - Lori Birder
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Basu Chakrabarty
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Subashan Perera
- University of Pittsburgh, Department of Medicine, Geriatrics Division, Pittsburgh, PA, USA
| | - Rajiv Dhir
- University of Pittsburgh, Department of Pathology, Pittsburgh, PA, USA
| | - Adam C. Straub
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
- Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, USA
| | | | - Karl-Erik Andersson
- Lund University, Division of Clinical Chemistry and Pharmacology, Lund, Sweden
| | - Marcus Drake
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Christopher H. Fry
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Anthony Kanai
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Li W, Yin X, Yan Y, Liu C, Li G. STEAP4 knockdown inhibits the proliferation of prostate cancer cells by activating the cGMP-PKG pathway under lipopolysaccharide-induced inflammatory microenvironment. Int Immunopharmacol 2021; 101:108311. [PMID: 34768126 DOI: 10.1016/j.intimp.2021.108311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022]
Abstract
Six-transmembrane epithelial antigen of prostate 4 (STEAP4) is involved in the development of human cancers. However, the role of STEAP4 in prostate cancer remains largely unknown. The purpose of this research is to explore the role and action mechanism of STEAP4 in prostate cancer development under lipopolysaccharide (LPS)-induced inflammatory microenvironment. STEAP4 expression was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and Cancer Cell Line Encyclopedia (CCLE), and its prognostic value was analyzed by LinkedOmics. STEAP4-correlated genes were analyzed by LinkedOmics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STEAP4 level was detected by Western blotting or qRT-PCR. Proliferation was investigated by CCK-8 and EdU staining. Inflammatory cytokine levels were detected by ELISA. The cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway was detected by ELISA and Western blotting. STEAP4 level was increased in prostate cancer tissues, and high expression of STEAP4 was associated with the poor overall survival. LPS promoted cell viability and STEAP4 expression. STEAP4 knockdown attenuated LPS-induced inflammation in prostate cancer cells. STEAP4 downregulation mitigated LPS-induced tumorigenesis by decreasing cell proliferation. STEAP4 silencing reversed LPS-induced inactivation of the cGMP-PKG pathway. Inhibition of the cGMP-PKG pathway using inhibitor KT5823 relieved STEAP4 silencing-mediated suppression of cell proliferation and inflammation in LPS-stimulated cells. In conclusion, STEAP4 silencing inhibits LPS-induced proliferation of prostate cancer cells by activating the cGMP-PKG pathway.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Gang Li
- Department of Surgical Anesthesiology, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China.
| |
Collapse
|
7
|
Oh KK, Adnan M, Cho DH. Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19. Sci Rep 2021; 11:9606. [PMID: 33953223 PMCID: PMC8100301 DOI: 10.1038/s41598-021-88313-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
8
|
Wang L, Wu Q, Liu J, Zhang H, Bai L. Lactic acid inhibits iNKT cell functions via a phosphodiesterase-5 dependent pathway. Biochem Biophys Res Commun 2021; 547:9-14. [PMID: 33588236 DOI: 10.1016/j.bbrc.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022]
Abstract
Lactic acid in tumor microenvironment inhibits iNKT cell functions and thus dampens their anti-tumor efficacy. The underlying mechanisms remain unclear. Here, we show that phosphodiesterase-5 inhibitors, sildenafil and tadalafil, promote IFN-γ and IL-4 production in iNKT cells in a cGMP-PKG pathway dependent manner. To favor their cytokine production, iNKT cells reduce Pde5a mRNA lever after activation. In line with the reduction of cytokines caused by lactic acid, lactic acid elevates Pde5a mRNA lever in activated iNKT cells. As a result, phosphodiesterase-5 inhibitor partially restores the cytokine production in lactic acid-treated cells. Our results demonstrate that phosphodiesterase-5 inhibits cytokine production in iNKT cells, and that contributes to the lactic acid-caused dysfunction of iNKT cells.
Collapse
Affiliation(s)
- Lili Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Qielan Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Jiwei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Huimin Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| | - Li Bai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
9
|
Mezzasoma L, Talesa VN, Romani R, Bellezza I. ANP and BNP Exert Anti-Inflammatory Action via NPR-1/cGMP Axis by Interfering with Canonical, Non-Canonical, and Alternative Routes of Inflammasome Activation in Human THP1 Cells. Int J Mol Sci 2020; 22:ijms22010024. [PMID: 33375031 PMCID: PMC7792787 DOI: 10.3390/ijms22010024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated inflammasome activation and interleukin (IL)-1β production are associated with several inflammatory disorders. Three different routes can lead to inflammasome activation: a canonical two-step, a non-canonical Caspase-4/5- and Gasdermin D-dependent, and an alternative Caspase-8-mediated pathway. Natriuretic Peptides (NPs), Atrial Natriuretic Peptide (ANP) and B-type Natriuretic Peptide (BNP), binding to Natriuretic Peptide Receptor-1 (NPR-1), signal by increasing cGMP (cyclic guanosine monophosphate) levels that, in turn, stimulate cGMP-dependent protein kinase-I (PKG-I). We previously demonstrated that, by counteracting inflammasome activation, NPs inhibit IL-1β secretion. Here we aimed to decipher the molecular mechanism underlying NPs effects on THP-1 cells stimulated with lipopolysaccharide (LPS) + ATP. Involvement of cGMP and PKG-I were assessed pre-treating THP-1 cells with the membrane-permeable analogue, 8-Br-cGMP, and the specific inhibitor KT-5823, respectively. We found that NPs, by activating NPR-1/cGMP/PKG-I axis, lead to phosphorylation of NLRP3 at Ser295 and to inflammasome platform disassembly. Moreover, by increasing intracellular cGMP levels and activating phosphodiesterases, NPs interfere with both Gasdermin D and Caspase-8 cleavage, indicating that they disturb non-canonical and alternative routes of inflammasome activation. These results showed that ANP and BNP anti-inflammatory and immunomodulatory actions may involve the inhibition of all the known routes of inflammasome activation. Thus, NPs might be proposed for the treatment of the plethora of diseases caused by a dysregulated inflammasome activation.
Collapse
|
10
|
He Y, Huang Y, Mai C, Pan H, Luo HB, Liu L, Xie Y. The immunomodulatory role of PDEs inhibitors in immune cells: therapeutic implication in rheumatoid arthritis. Pharmacol Res 2020; 161:105134. [DOI: 10.1016/j.phrs.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
|
11
|
Hu C, Zhang X, Zhang N, Wei WY, Li LL, Ma ZG, Tang QZ. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin Transl Med 2020; 10:e124. [PMID: 32618439 PMCID: PMC7418805 DOI: 10.1002/ctm2.124] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation, oxidative stress, and apoptosis contribute to the evolution of doxorubicin (DOX)‐induced cardiotoxicity. Osteocrin (OSTN) is a novel secretory peptide mainly derived from the bone and skeletal muscle, and plays critical roles in regulating bone growth and physical endurance. Inspiringly, OSTN was also reported to be abundant in the myocardium that functioned as a therapeutic agent against cardiac rupture and congestive heart failure in mice after myocardial infarction. Herein, we investigated the role and potential mechanism of OSTN in DOX‐induced cardiotoxicity. Methods Cardiac‐restrict OSTN overexpression was performed by the intravenous injection of a cardiotropic AAV9 vector, and subsequently the mice received 15 mg/kg DOX injection (i.p., once) to induce acute cardiac injury. Besides, H9C2 cell lines were used to assess the possible role of OSTN in vitro by incubating with recombinant human OSTN or small interfering RNA against Ostn (siOstn). To clarify the involvement of protein kinase G (PKG), KT5823 and siPkg were used in vivo and in vitro. Mice were also administrated intraperitoneally with 5 mg/kg DOX weekly for consecutive 3 weeks at a cumulative dose of 15 mg/kg to mimic the cardiotoxic effects upon chronic DOX exposure. Results OSTN treatment notably attenuated, whereas OSTN silence exacerbated inflammation, oxidative stress, and cardiomyocyte apoptosis in DOX‐treated H9C2 cells. Besides, cardiac‐restrict OSTN‐overexpressed mice showed an alleviated cardiac injury and malfunction upon DOX injection. Mechanistically, we found that OSTN activated PKG, while PKG inhibition abrogated the beneficial effect of OSTN in vivo and in vitro. As expected, OSTN overexpression also improved cardiac function and survival rate in mice after chronic DOX treatment. Conclusions OSTN protects against DOX‐elicited inflammation, oxidative stress, apoptosis, and cardiac dysfunction via activating PKG, and cardiac gene therapy with OSTN provides a novel therapeutic strategy against DOX‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| |
Collapse
|
12
|
Inflammation is a target of medical treatment for lower urinary tract symptoms associated with benign prostatic hyperplasia. World J Urol 2020; 38:2771-2779. [PMID: 32060633 PMCID: PMC7644532 DOI: 10.1007/s00345-020-03106-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To review the role of a persistent prostatic inflammatory status (PIS) in the development and progression of benign prostatic hyperplasia (BPH) associated with lower urinary tract symptoms (LUTS) and which medical therapies approved for LUTS/BPH may reduce persistent PIS. Methods Literature search in PubMed up to July 2019. Results The cause of histologically defined persistent PIS or chronic prostatic inflammation is multifactorial. It is evident in many men with LUTS/BPH, particularly in older men and in men with a large prostate volume or more severe (storage) LUTS. Additionally, persistent PIS is associated with an increased risk of acute urinary retention and symptom worsening. Of medical therapies approved for LUTS/BPH, the current evidence for a reduction of persistent PIS is greatest for the hexanic extract of Serenoa repens (HESr). This treatment relieves LUTS to the same extent as α1-adrenoceptor antagonists and short-term 5α-reductase inhibitors. Limited evidence is available on the effect of other mainstream LUTS/BPH treatments on persistent PIS. Conclusions Persistent PIS plays a central role in both the development and progression of LUTS/BPH. In men with LUTS/BPH who have a high chance of harbouring persistent PIS, HESr will not only improve LUTS, but also reduce (underlying) inflammation. Well-designed clinical studies, with a good level of evidence, are required to better evaluate the impact of BPH/LUTS medical therapies on persistent PIS. Electronic supplementary material The online version of this article (10.1007/s00345-020-03106-1) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Alhakamy NA, Fahmy UA, Ahmed OAA. Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation. Pharmaceutics 2019; 11:E640. [PMID: 31805693 PMCID: PMC6955804 DOI: 10.3390/pharmaceutics11120640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The FDA has approved tadalafil (TDL) for the treatment of benign prostatic hyperplasia (BPH)-associated symptoms. Pumpkin seed oil (PSO) has shown promise for the relief of prostatitis-related lower urinary tract symptoms. The aim was to improve TDL delivery to the prostate and assess the combined effect of TDL with a PSO-based formula in the management of BPH. PSO, Tween 80, and polyethylene glycol 200 were selected for the optimization of self nano-emulsified drug delivery system (SNEDDS). The formed vesicles were assessed for their globule size and zeta potential. A rat in vivo study was carried out to investigate prostate weight and index, histopathology, and pharmacokinetics. The average globule size for the optimized TDL-PSO SNEDDS was 204.8 ± 18.76 nm, with a zeta-potential value of 7.86 ± 1.21 mV. TDL-PSO SNEDDS produced a marked drop in prostate weight by 35.51% and prostate index by 36.71% compared to the testosterone-only group. Pharmacokinetic data revealed a 2.3-fold increase of TDL concentration, from optimized TDL-PSO SNEDDS, in the prostate compared with the raw TDL group. This study indicated that the combination of TDL and PSO in an optimized TDL PSO SNEDDS formula improved the efficacy of TDL in the management of BPH.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
14
|
Jin S, Xiang P, Liu J, Yang Y, Hu S, Sheng J, He Q, Yu W, Han W, Jin J, Peng J. Activation of cGMP/PKG/p65 signaling associated with PDE5-Is downregulates CCL5 secretion by CD8 + T cells in benign prostatic hyperplasia. Prostate 2019; 79:909-919. [PMID: 30958912 PMCID: PMC6593656 DOI: 10.1002/pros.23801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men, but the underlying pathophysiological mechanisms are complex and not fully understood. Phosphodiesterase type 5 inhibitors (PDE5-Is) used to treat BPH could upregulate the cyclic guanosine monophosphate (cGMP)-dependent protein kinase G (PKG) signaling, which was shown to blunt inflammation in the prostate. Our previous findings indicate that CD8+ T cells promote the proliferation of BPH epithelial cells (BECs) in low androgen conditions through secretion of CCL5; however, the role of the cGMP/PKG pathway in the process is unclear. METHODS Paraffin-embedded tissues were used for expression quantity of CD8+ T cells, CCL5, cyclin D1, and PDE5 protein by immunohistology in prostate specimens which were/were not treated with finasteride 5 mg daily for at least 6 months before surgery. BPH-1 cells were cocultured with or without CD8 + T cells or PDE5-Is in low androgen conditions for 4 days. The conditioned media, BPH-1 cells, and CD8 + T cells were harvested for the subsequent experiments. The quantitative polymerase chain reaction was used for assaying the level of messenger RNA expression of CCL5. CCL5 in the conditioned media was detected by the enzyme-linked immunosorbent assay. The effect of PDE5-Is on cocultured BPH-1/CD8 + T-cell proliferation was detected by the cell counting kit-8. A high-fat diet (HFD)-induced prostatic hyperplasia rat model was used to investigate the effect of cGMP/PKG activation in CD8 + T cells in vivo. RESULTS CD8+ T-cell infiltration into human BPH tissues was positively correlated with the expression of CCL5, cyclin D1, and PDE5, whereas in an HFD-induced prostatic hyperplasia rat model, the activation of the cGMP/PKG signaling by a PDE5-I could suppress the CD8 + T-cell infiltration and the CCL5 and cyclin D1 expression. Furthermore, the activation of the cGMP/PKG pathway inhibited CCL5 secretion by CD8 + T cells by downregulating nuclear factor-κB p65 phosphorylation, which reduced the growth of BPH-1 through CCL5/STAT5/CCND1 signaling. CONCLUSIONS Our results indicate that the upregulation of the cGMP/PKG/p65 signaling reduces CCL5 secretion in CD8 + T cells, which in turn decreases the proliferation of BECs in low androgen conditions, suggesting that the combination of 5α reductase inhibitors lowering androgen levels and PDE5-Is may be a novel, more effective treatment for BPH patients.
Collapse
Affiliation(s)
- Song Jin
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Peng Xiang
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jie Liu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Yang Yang
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Shuai Hu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jindong Sheng
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Qun He
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Wei Yu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Wenke Han
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jie Jin
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jing Peng
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| |
Collapse
|