1
|
Liu XC, Liu YX, Liu C. Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate: Coexistence mechanisms from multiple perspectives. World J Clin Cases 2025; 13:100248. [PMID: 40291576 PMCID: PMC11718564 DOI: 10.12998/wjcc.v13.i12.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma. Combining existing literature and research results, the potential mechanisms of the co-occurrence of these two cancers are explored, including the role of androgen receptor, gene mutations, and their complex interactions in cell signaling pathways, etc. Also, the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives, including tumor multipotent stem cell differentiation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and other mechanisms. Ultimately, the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice, as well as to lay the foundation for improving patient prognoses in the future.
Collapse
Affiliation(s)
- Xu-Chang Liu
- The No. 1 Clinical Medical School, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yu-Xiang Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Chun Liu
- The No. 1 Clinical Medical School, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
2
|
Lee J, Lee Y. The role of transcription factors in prostate cancer progression. Mol Cells 2025; 48:100193. [PMID: 39938868 PMCID: PMC11907451 DOI: 10.1016/j.mocell.2025.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Prostate cancer is one of the most common malignancies in men, with most cases initially responding to androgen deprivation therapy. However, a significant number of patients eventually develop castration-resistant prostate cancer, an aggressive form of the disease. Although androgen receptor (AR) pathway inhibitors target AR signaling, and have extended survival in patients with castration-resistant prostate cancer, prolonged treatment can lead to the emergence of neuroendocrine prostate cancer (NEPC), a lethal subtype characterized by the expression of neuroendocrine markers and reduced AR activity. The transition from adenocarcinoma to NEPC is driven by lineage plasticity, wherein cancer cells adopt a neuroendocrine phenotype to evade treatment. Consequently, NEPC patients face poor clinical outcomes and limited effective treatment options. To improve outcomes, it is crucial to understand the molecular mechanisms driving NEPC development. In this review, we highlight the role of transcription factors in this process and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
3
|
Bernstein AP, Codrington J, Ramasamy R. Comment on: "Untreated hypogonadism and testosterone replacement therapy in hypogonadal men are associated with a decreased risk of subsequent prostate cancer: a population-based study". Int J Impot Res 2024; 36:668-669. [PMID: 39004620 DOI: 10.1038/s41443-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Ari P Bernstein
- New York University Langone Health, Department of Urology, New York, NY, USA
| | - Jason Codrington
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Atobatele AG, Tonoli E, Vadakekolathu J, Savoca MP, Barr M, Kataria Y, Rossanese M, Burhan I, McArdle S, Caccamo D, Verderio EAM. Canonical and truncated transglutaminase-2 regulate mucin-1 expression and androgen independency in prostate cancer cell lines. Cell Death Dis 2023; 14:317. [PMID: 37160910 PMCID: PMC10170068 DOI: 10.1038/s41419-023-05818-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Androgen independency is associated with poor prostate cancer (PCa) survival. Here we report that silencing of transglutaminase-2 (TG2) expression by CRISPR-Cas9 is associated with upregulation of androgen receptor (AR) transcription in PCa cell lines. Knockout of TG2 reversed the migratory potential and anchorage independency of PC3 and DU145 cells and revealed a reduced level of mucin-1 (MUC1) RNA transcript through unbiased multi-omics profiling, which was restored by selective add-back of the truncated TG2 isoform (TGM2_v2). Silencing of AR resulted into increased MUC1 in TG2KO PC3 cells showing that TG2 affects transcriptional regulation of MUC1 via repressing AR expression. Treatment of PC3 WT cell line with TG2 inhibitor ZDON led to a significant increase in AR expression and decrease in MUC1. ZDON also blocked the formation of MUC1-multimers labelled with TG amine-donor substrates in reducing conditions, revealing for the first time a role for TG2, which we show to be externalised via extracellular vesicles, in MUC1 stabilisation via calcium-dependent transamidation. A specific antibody towards TGM2_v2 revealed its restricted nuclear location compared to the canonical long form of TG2 (TGM2_v1), which is predominantly cytosolic, suggesting that this form contributes to the previously suggested TG2-mediated NF-κB activation and AR transcriptional repression. As TGM2_v2 transcription was increased in biopsies of early-stage prostate adenocarcinoma (PRAD) patients compared to subjects presenting inflammatory prostatitis, and total TG2 protein expression significantly increased in PRAD versus normal tissue, the role of TG2 and its truncated form as a prostate malignancy marker is suggested. In conclusion, this investigation has provided the first unbiased discovery of a novel pathway mediated by TG2 via MUC1, which is shown to contribute to androgen insensitivity and malignancy of PCa cells and be upregulated in PCa biopsies, with potential relevance to cancer immune evasion.
Collapse
Affiliation(s)
- Adeola Grace Atobatele
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
- Department of Biological and Biomedical Sciences, Science Centre, School of Health, Science and Wellbeing, Staffordshire University, Leek Road, Stoke-on-Trent, ST4 2DF, UK
| | - Elisa Tonoli
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Maria Pia Savoca
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Melissa Barr
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Yukti Kataria
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Marta Rossanese
- Department of Human and Paediatric Pathology, Polyclinic Hospital University, Via C. Valeria 1, 98125, Messina, Italy
| | - Izhar Burhan
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stephanie McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, Polyclinic Hospital University, Via C. Valeria 1, 98125, Messina, Italy
| | - Elisabetta A M Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham, NG11 8NS, UK.
- Biological Sciences Department (BiGeA), University of Bologna, Bologna, 40126, Italy.
| |
Collapse
|
5
|
Li L, Xu J. The androgen receptor-targeted proteolysis targeting chimera and other alternative therapeutic choices in overcoming the resistance to androgen deprivation treatment in prostate cancer. Clin Transl Oncol 2023; 25:352-363. [PMID: 36203075 PMCID: PMC9873748 DOI: 10.1007/s12094-022-02957-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 01/28/2023]
Abstract
Androgen receptor (AR) plays a vital role in prostate cancer (PCa), including castration-resistant PCa, by retaining AR signalling. Androgen deprivation treatment (ADT) has been the standard treatment in the past decades. A great number of AR antagonists initially had been found effective in tumour remission; however, most PCa relapsed that caused by pre-translational resistance such as AR mutations to turn antagonist into agonist, and AR variants to bypass the androgen binding. Recently, several alternative therapeutic choices have been proposed. Among them, proteolysis targeting chimera (PROTAC) acts different from traditional drugs that usually function as inhibitors or antagonists, and it degrades oncogenic protein and does not disrupt the transcription of an oncogene. This review first discussed some essential mechanisms of ADT resistance, and then introduced the application of AR-targeted PROTAC in PCa cells, as well as other AR-targeted therapeutic choices.
Collapse
Affiliation(s)
- Liuxun Li
- grid.1006.70000 0001 0462 7212Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Jiangli Xu
- Department of Pharmacy, No.921 Hospital of the Joint Logistics Support Force, Changsha, 410003 China
| |
Collapse
|
6
|
Transcriptomic Signature and Growth Factor Regulation of Castration-Tolerant Prostate Luminal Progenitor Cells. Cancers (Basel) 2022; 14:cancers14153775. [PMID: 35954439 PMCID: PMC9367377 DOI: 10.3390/cancers14153775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The molecular and cellular mechanisms that drive castration-resistant prostate cancer (CRPC) remain poorly understood. LSCmed cells defines an FACS-enriched population of castration-tolerant luminal progenitor cells that has been proposed to promote tumorigenesis and CRPC in Pten-deficient mice. The goals of this study were to assess the relevance of LSCmed cells through the analysis of their molecular proximity with luminal progenitor-like cell clusters identified by single-cell (sc)RNA-seq analyses of mouse and human prostates, and to investigate their regulation by in silico-predicted growth factors present in the prostatic microenvironment. Methods: Several bioinformatic pipelines were used for pan-transcriptomic analyses. LSCmed cells isolated by cell sorting from healthy and malignant mouse prostates were characterized using RT-qPCR, immunofluorescence and organoid assays. Results: LSCmed cells match (i) mouse luminal progenitor cell clusters identified in scRNA-seq analyses for which we provide a common 15-gene signature including the previously identified LSCmed marker Krt4, and (ii) Club/Hillock cells of the human prostate. This transcriptional overlap was maintained in cancer contexts. EGFR/ERBB4, IGF-1R and MET pathways were identified as autocrine/paracrine regulators of progenitor, proliferation and differentiation properties of LSCmed cells. The functional redundancy of these signaling pathways allows them to bypass the effect of receptor-targeted pharmacological inhibitors. Conclusions: Based on transcriptomic profile and pharmacological resistance to monotherapies that failed in CRPC patients, this study supports LSCmed cells as a relevant model to investigate the role of castration-tolerant progenitor cells in human prostate cancer progression.
Collapse
|
7
|
Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153744. [PMID: 35954408 PMCID: PMC9367587 DOI: 10.3390/cancers14153744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.
Collapse
|
8
|
Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. J Transl Med 2022; 102:332-340. [PMID: 34937865 DOI: 10.1038/s41374-021-00716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common cancer among men and has a high incidence and associated mortality worldwide. It is an androgen-driven disease in which tumor growth is triggered via ligand-mediated signaling through the androgen receptor (AR). Recent evidence suggests that the widespread use of effective AR pathway inhibitors may increase the occurrence of neuroendocrine prostate cancer (NEPC), an aggressive and treatment-resistant AR-negative variant; however, mechanisms controlling NEPC development remain to be elucidated. Various preclinical models have recently been developed to investigate the mechanisms driving the NEPC differentiation. In the present study, we summarized strategies for the development of NEPC models and proposed a novel method for model evaluation, which will help in the timely and accurate identification of NEPC by virtue of its ability to recapitulate the heterogeneity of prostate cancer. Moreover, we discuss the origin and the mechanism of NEPC. The understanding of the regulatory network mediating neuroendocrine differentiation presented in this review could provide valuable insights into the identification of novel drug targets for NEPC as well as into the causes of antiandrogenic drug resistance.
Collapse
|
9
|
Brook N, Brook E, Dass CR, Chan A, Dharmarajan A. Pigment Epithelium-Derived Factor and Sex Hormone-Responsive Cancers. Cancers (Basel) 2020; 12:cancers12113483. [PMID: 33238558 PMCID: PMC7700359 DOI: 10.3390/cancers12113483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Oestrogens and androgens play important roles in normal and cancerous tissue and have been shown to negatively regulate pigment epithelium-derived factor (PEDF) expression in sex hormone-responsive tumours. PEDF suppresses tumour growth and its downregulation by oestrogen is implicated in tumorigenesis, metastasis, and progression. PEDF expression is reduced in cancerous tissue of the prostate, breast, ovary, and endometrium compared to their normal tissue counterparts, with a link between PEDF downregulation and sex hormone signalling observed in pre-clinical studies. PEDF reduces growth and metastasis of tumour cells by promoting apoptosis, inhibiting angiogenesis, increasing adhesion, and reducing migration. PEDF may also prevent treatment resistance in some cancers by downregulating oestrogen receptor signalling. By interacting with components of the tumour microenvironment, PEDF counteracts the proliferative and immunosuppressive effects of oestrogens, to ultimately reduce tumorigenesis and metastasis. In this review, we focus on sex hormone regulation of PEDF's anti-tumour action in sex hormone-responsive tumours.
Collapse
Affiliation(s)
- Naomi Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
| | - Emily Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA 6102, Australia; (N.B.); (E.B.)
- Curtin Health Innovation Research Institute, Bentley, WA 6102, Australia
- Correspondence: (C.R.D.); (A.D.); Tel.: +61-8-9266-1489 (C.R.D.)
| | - Arlene Chan
- School of Medicine, Curtin University, Bentley, WA 6102, Australia;
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands, WA 6009, Australia
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
- Correspondence: (C.R.D.); (A.D.); Tel.: +61-8-9266-1489 (C.R.D.)
| |
Collapse
|
10
|
Li CY, Gupta A, Gáborik Z, Kis E, Prasad B. Organic Anion Transporting Polypeptide-Mediated Hepatic Uptake of Glucuronide Metabolites of Androgens. Mol Pharmacol 2020; 98:234-242. [PMID: 32587096 DOI: 10.1124/mol.120.119891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 02/14/2025] Open
Abstract
We previously established that androgen glucuronides are effluxed by multidrug resistance-associated proteins 2 and 3. However, no data exist on the mechanism of hepatic uptake of these metabolites. The first goal of this study was to explore the role of hepatic uptake transporters and characterize transport kinetics of glucuronides of testosterone (TG), dihydrotestosterone (DHTG), androsterone (AG), and etiocholanolone (EtioG) using cell lines overexpressing organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1). Using a quantitative proteomics-guided approach, we then estimated the fractional contribution of individual OATPs in hepatic uptake of these glucuronides. The transport screening assays revealed that the glucuronides were primarily taken up by OATP1B1 and OATP1B3. The K m values for OATP1B1-mediated uptake were low for EtioG (6.2 µM) as compared with AG, TG, and DHTG (46.2, 56.7, and 71.3 µM, respectively), whereas the K m value for OATP1B3-mediated uptake for EtioG, AG, DHTG, and TG were 19.8, 29.3, 69.6, and 110.4 µM, respectively. Both OATP1B1 and OATP1B3 exhibited the highest transport rate toward AG as compared with other glucuronides. When adjusted for the transporter abundance in human livers, EtioG and DHTG were predicted to be transported by both OATP1B1 and OATP1B3, whereas TG and AG were preferentially (>68%) transported by OATP1B3. Collectively, this report elucidates the mechanisms of hepatic uptake of androgen glucuronides. Perturbation of these processes by genetic polymorphisms, disease conditions, or drug interactions can lead to changes in enterohepatic recycling of androgens. TG and AG can be further investigated as potential biomarkers of OATP1B3 inhibition. SIGNIFICANCE STATEMENT: This is the first study to elucidate the mechanism of hepatic uptake of androgen glucuronides and estimate the fractional contribution of individual OATPs using quantitative proteomics. Our results show that both OATP1B1 and OATP1B3 are responsible for the hepatic uptake of major circulating testosterone glucuronides. The apparent higher selectivity of OATP1B3 toward testosterone glucuronide and androsterone glucuronide can be leveraged for establishing these metabolites as clinical biomarkers of OATP1B3 activity.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Pharmaceutics, University of Washington, Seattle, Washington (C.Y.L.); Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, Massachusetts (A.G.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Anshul Gupta
- Department of Pharmaceutics, University of Washington, Seattle, Washington (C.Y.L.); Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, Massachusetts (A.G.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Zsuzsanna Gáborik
- Department of Pharmaceutics, University of Washington, Seattle, Washington (C.Y.L.); Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, Massachusetts (A.G.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Emese Kis
- Department of Pharmaceutics, University of Washington, Seattle, Washington (C.Y.L.); Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, Massachusetts (A.G.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (C.Y.L.); Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, Massachusetts (A.G.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| |
Collapse
|
11
|
Zhou M, Wang X, Xia J, Cheng Y, Xiao L, Bei Y, Tang J, Huang Y, Xiang Q, Huang S. A Mansonone Derivative Coupled with Monoclonal Antibody 4D5-Modified Chitosan Inhibit AKR1C3 to Treat Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:3087-3098. [PMID: 32431503 PMCID: PMC7200237 DOI: 10.2147/ijn.s241324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Aldo-ketoreductase (AKR) 1C3 is crucial for testosterone synthesis. Abnormally high expression/activity of AKR1C3 can promote castration-resistant prostate cancer (CRPC). A mansonone derivative and AKR1C3 inhibitor, 6e, was combined with 4D5 (extracellular fragment of the monoclonal antibody of human epidermal growth factor receptor-2)-modified chitosan to achieve a nanodrug-delivery system (CS-4D5/6e) to treat CRPC. Materials and Methods Morphologies/properties of CS-4D5/6e were characterized by atomic force microscopy, zeta-potential analysis, and Fourier transform-infrared spectroscopy. CS-4D5/6e uptake was measured by immunofluorescence under confocal laser scanning microscopy. Testosterone in LNCaP cells overexpressing human AKR1C3 (LNCaP-AKR1C3) and cell lysates was measured to reflect AKR1C3 activity. Androgen receptor (AR) and prostate-specific antigen (PSA) expression was measured by Western blotting. CS-4D5/6e-based inhibition of AKR1C3 was evaluated in tumor-xenografted mice. Results CS-4D5/6e was oblate, with a particle size of 200-300 nm and thickness of 1-5 nm. Zeta potential was 1.39±0.248 mV. 6e content in CS-4D5/6e was 7.3±1.4% and was 18±3.6% for 4D5. 6e and CS-4D5/6e inhibited testosterone production significantly in a concentration-dependent manner in LNCaP-AKR1C3 cells, and a decrease in expression of AKR1C3, PSA, and AR was noted. Half-maximal inhibitory concentration of CS-4D5/6e on LNCaP-AKR1C3 cells was significantly lower than that in LNCaP cells (P<0.05). CS-4D5/6e significantly reduced growth of 22Rv1 tumor xenografts by 57.00% compared with that in the vehicle group (P<0.01). Conclusion We demonstrated the antineoplastic activity of a potent AKR1C3 inhibitor (6e) and its nanodrug-delivery system (CS-4D5/6e). First, CS-4D5/6e targeted HER2-positive CRPC cells. Second, it transferred 6e (an AKR1C3 inhibitor) to achieve a reduction in intratumoral testosterone production. Compared with 6e, CS-4D5/6e showed lower systemic toxicity. CS-4D5/6e inhibited tumor growth effectively in mice implanted with tumor xenografts by downregulating testosterone production mediated by intratumoral AKR1C3. These results showed a promising strategy for treatment of the CRPC that develops invariably in prostate-cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianzhong Tang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Shiliang Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
McManus JM, Bohn K, Alyamani M, Chung YM, Klein EA, Sharifi N. Rapid and structure-specific cellular uptake of selected steroids. PLoS One 2019; 14:e0224081. [PMID: 31622417 PMCID: PMC6797172 DOI: 10.1371/journal.pone.0224081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/05/2019] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones and their respective nuclear receptors are essential mediators in numerous physiologic and pathophysiologic processes, ranging from regulation of metabolism, immune function, and reproductive processes to the development of hormone-dependent cancers such as those of the breast and prostate. Because steroids must enter cells before activating nuclear receptors, understanding the mechanisms by which cellular uptake occurs is critical, yet a clear understanding of these mechanisms has been elusive. It is generally assumed that diffusion-driven uptake is similar across various steroids whereas an elevated cellular concentration is thought to reflect active uptake, but these assumptions have not been directly tested. Here we show that intact cells rapidly accumulate free steroids to markedly elevated concentrations. This effect varies widely depending on steroid structure; more lipophilic steroids reach more elevated concentrations. Strong preferences exist for 3β-OH, Δ5-steroids vs. 3-keto, Δ4-structural features and for progestogens vs. androgens. Surprisingly, steroid-structure-specific preferences do not require cell viability, implying a passive mechanism, and occur across cells derived from multiple tissue types. Physiologic relevance is suggested by structure-specific preferences in human prostate tissue compared with serum. On the other hand, the presence of serum proteins in vitro blocks much, but not all, of the passive accumulation, while still permitting a substantial amount of active accumulation for certain steroids. Our findings suggest that both passive and active uptake mechanisms make important contributions to the cellular steroid uptake process. The role of passive, lipophilicity-driven accumulation has previously been largely unappreciated, and its existence provides important context to studies on steroid transport and action both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeffrey M. McManus
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kelsey Bohn
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mohammad Alyamani
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yoon-Mi Chung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A. Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Nima Sharifi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|