1
|
Huang P, Wei S, Ren J, Tang Z, Guo M, Situ F, Zhang D, Zhu J, Xiao L, Xu J, Liu G. MicroRNA-124-3p alleviates cerebral ischaemia-induced neuroaxonal damage by enhancing Nrep expression. J Stroke Cerebrovasc Dis 2023; 32:106949. [PMID: 36535134 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Ischaemic stroke has a high death rate and frequently results in long-term and severe brain damage in survivors. miRNA-124-3p (miR-124-3p) treatment has been suggested to reduce ischaemia and play a vital function in avoiding neuron death. An investigation of the role of miR-124-3p, in the ischaemia damage repair or protection in the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/R) model, was the purpose of this research. METHODS The expression of miRNA and mRNA in the MCAO model was predicted using bioinformatics analysis. The OGD/R neuronal model was developed. We examined the influence of a number of compounds on the OGD/R model in vitro using gain- and loss-of-function approaches. RESULTS For starters, miR-124-3p and Nrep level in the MCAO model were found to be lower in the model predicted by bioinformatics than in the sham-operated group. And then in the OGD/R model, miR-124-3p treatment reduced OGD/R neuronal damage, increased neuronal survival, and reduced apoptosis in cell lines. Moreover, we further looked at the impact of miR-124-3p on downstream Rnf38 and Nrep using the OGD/R model. Western blot analysis and dual-luciferase reporter assays indicated that miR-124-3p binds and inhibits Rnf38. Finally, although Nrep expression was reduced in the OGD/R model neuronal model, it was shown that miR-124-3p administration reduced apoptosis and increased neuronal activity, particularly with regard to axon regeneration-related proteins. CONCLUSION Our studies have shown that miR-124-3p may reduce neuronal injury by preventing Rnf38-mediated effects on the Nrep axis.
Collapse
Affiliation(s)
- Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China; Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Ren
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuohong Tang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Mingjuan Guo
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Fen Situ
- Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Dan Zhang
- Surgical Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianghua Zhu
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Li Xiao
- Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Guoqing Liu
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| |
Collapse
|
2
|
Ueda T, Fujita K, Nishimoto M, Shiraishi T, Miyashita M, Kayukawa N, Nakamura Y, Sako S, Ogura R, Fujihara A, Minami T, Hongo F, Okihara K, Yoshimura K, Uemura H, Ukimura O. Predictive factors for the efficacy of abiraterone acetate therapy in high-risk metastatic hormone-sensitive prostate cancer patients. World J Urol 2022; 40:2939-2946. [PMID: 36331614 DOI: 10.1007/s00345-022-04200-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE There is a discrepancy in the efficacy of abiraterone acetate for overall survival (OS) in patients with high-risk metastatic hormone-sensitive prostate cancer (mHSPC). This study aimed to identify predictive factors for the efficacy of abiraterone acetate for OS in high-risk mHSPC patients by analyzing them over a longer observation period. METHODS Five hundred high-risk mHSPC patients were retrospectively identified at our hospital and affiliated hospitals in the Kindai Oncology Study Group and Kyoto Prefectural University of Medicine Oncology Study Group between December 2013 and March 2022. Two hundred patients were treated with abiraterone acetate (1000 mg/day) plus prednisolone (5 mg/day) combined with androgen deprivation therapy (ADT). A total of 300 patients were treated with bicalutamide (80 mg/day) in combination with ADT. RESULTS OS was not significantly different between the two treatments in the overall cohort (p = 0.1643). In the subgroup without Gleason pattern 5 at the primary lesion, OS was significantly better in patients treated with abiraterone acetate than in those treated with bicalutamide (p = 0.0192). In the subgroup with Gleason pattern 5 at the primary lesion, no significant difference was found between the two treatments (p = 0.1799). Univariate and multivariate analyses in the subgroup without Gleason pattern 5 at the primary lesion suggested that abiraterone therapy may be an important and independent predictor of OS in high-risk mHSPC patients. CONCLUSION The presence of Gleason pattern 5 at the primary lesion may be a predictor for high-risk mHSPC patients who could benefit from abiraterone acetate treatment.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan.
| | - Kazutoshi Fujita
- Department of Urology, Kindai University, Faculty of Medicine, Sayama-City, Osaka, Japan
| | - Mitsuhisa Nishimoto
- Department of Urology, Kindai University, Faculty of Medicine, Sayama-City, Osaka, Japan
| | - Takumi Shiraishi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Masatsugu Miyashita
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Naruhiro Kayukawa
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Yuichi Nakamura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Satoshi Sako
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Ryota Ogura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Atsuko Fujihara
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Takafumi Minami
- Department of Urology, Kindai University, Faculty of Medicine, Sayama-City, Osaka, Japan
| | - Fumiya Hongo
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| | - Koji Okihara
- Department of Urology, North Medical Center, Kyoto Prefectural University of Medicine, Yosano-Gun, Kyoto, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Kindai University, Faculty of Medicine, Sayama-City, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University, Faculty of Medicine, Sayama-City, Osaka, Japan
| | - Osamu Ukimura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, 602-8566, Japan
| |
Collapse
|
3
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
4
|
Ye M, Tian H, Lin S, Mo J, Li Z, Chen X, Liu J. Resveratrol inhibits proliferation and promotes apoptosis via the androgen receptor splicing variant 7 and PI3K/AKT signaling pathway in LNCaP prostate cancer cells. Oncol Lett 2020; 20:169. [PMID: 32934736 PMCID: PMC7471767 DOI: 10.3892/ol.2020.12032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a common malignant tumor of the male genitourinary system and its incidence increases with age. Studies have shown that resveratrol (Res) inhibits cancer cell proliferation, migration, invasion and promotes apoptosis. The present study evaluated the effect of Res in two human prostate cancer cell lines (the androgen-dependent LNCaP cell line and the non-androgen-independent LNCaP-B cell line) on proliferation and apoptosis. A proliferation assay was used to demonstrate that Res inhibited proliferation of LNCaP and LNCaP-B cells in the range of 25-100 µM, and the effect was time- and dose-dependent. Using flow cytometry, it was reported that various concentrations of Res induced apoptosis in LNCaP and LNCaP-B cells, and that the apoptotic effect of Res was dose-dependent. A chemiluminescence assay showed that Res inhibited prostate specific antigen levels in LNCaP and LNCaP-B cells. Reverse transcription quantitative-PCR showed that Res inhibited the expression of androgen receptor (AR) in LNCaP and LNCaP-B cells at the mRNA level. Western blot analysis showed that Res suppressed the expression of AR protein as well as protein kinase B (AKT) phosphorylation. To study the effect of Res on the expression of AR splicing variant 7 (ARV7) and the PI3K/AKT signaling pathway in prostate cancer cells, as well as the underlying molecular mechanisms, the recombinant ARV7 expression vector Pcdna3.1-ARV7 was transfected into LNCaP and LNCaP cells and the aforementioned experiments were repeated. It was revealed that Res acted via the ARV7 and the AKT pathways. Taken together, the present results suggested that Res suppresses the proliferation of prostate cancer cells, promotes apoptosis and inhibits the expression of AR mRNA and protein. These effects likely resulted from inhibition of ARV7 and the AKT signaling pathway.
Collapse
Affiliation(s)
- Mushi Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Huanshu Tian
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Shanhong Lin
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhuo Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaojun Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
5
|
RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: A mechanism of castration resistance. Proc Natl Acad Sci U S A 2020; 117:28092-28101. [PMID: 33106406 DOI: 10.1073/pnas.2008479117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (CaP) driven by androgen receptor (AR) is treated with androgen deprivation; however, therapy failure results in lethal castration-resistant prostate cancer (CRPC). AR-low/negative (ARL/-) CRPC subtypes have recently been characterized and cannot be targeted by hormonal therapies, resulting in poor prognosis. RNA-binding protein (RBP)/helicase DDX3 (DEAD-box helicase 3 X-linked) is a key component of stress granules (SG) and is postulated to affect protein translation. Here, we investigated DDX3-mediated posttranscriptional regulation of AR mRNA (messenger RNA) in CRPC. Using patient samples and preclinical models, we objectively quantified DDX3 and AR expression in ARL/- CRPC. We utilized CRPC models to identify DDX3:AR mRNA complexes by RNA immunoprecipitation, assess the effects of DDX3 gain/loss-of-function on AR expression and signaling, and address clinical implications of targeting DDX3 by assessing sensitivity to AR-signaling inhibitors (ARSI) in CRPC xenografts in vivo. ARL/- CRPC expressed abundant AR mRNA despite diminished levels of AR protein. DDX3 protein was highly expressed in ARL/- CRPC, where it bound to AR mRNA. Consistent with a repressive regulatory role, DDX3 localized to cytoplasmic puncta with SG marker PABP1 in CRPC. While induction of DDX3-nucleated SGs resulted in decreased AR protein expression, inhibiting DDX3 was sufficient to restore 1) AR protein expression, 2) AR signaling, and 3) sensitivity to ARSI in vitro and in vivo. Our findings implicate the RBP protein DDX3 as a mechanism of posttranscriptional regulation for AR in CRPC. Clinically, DDX3 may be targetable for sensitizing ARL/- CRPC to AR-directed therapies.
Collapse
|
6
|
Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia 2020; 22:566-575. [PMID: 32980775 PMCID: PMC7522286 DOI: 10.1016/j.neo.2020.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) occurs when prostate cancer (CaP) progresses under therapy-induced castrate conditions. Several mechanisms have been proposed to explain this acquired resistance, many of which are driven by androgen receptor (AR). Recent findings, however, sub-classified CRPC by downregulation/absence of AR in certain subtypes that consequently do not respond to anti-androgen therapies. To highlight the significance of CRPC sub-classification, we reviewed the development and treatment of CRPC, AR downregulation in CRPC, and summarized recent reports on the prevalence of CRPC subtypes. METHODS Using a medline-based literature search, we reviewed mechanisms of CRPC development, current treatment schemes, and assessed the prevalence of AR low/negative subtypes of CRPC. Additionally, we performed immunohistochemical staining on human CRPC specimens to quantify AR expression across CRPC subtypes. RESULTS In the majority of cases, CRPC continues to rely on AR signaling, which can be augmented in castrate-conditions through a variety of mechanisms. However, recently low/negative AR expression patterns were identified in a significant proportion of patient samples from a multitude of independent studies. In these AR low/negative cases, we postulated that AR protein may be downregulated by (1) promoter methylation, (2) transcriptional regulation, (3) post-transcriptional regulation by microRNA or RNA-binding-proteins, or (4) post-translational ubiquitination-mediated degradation. CONCLUSIONS Here, we discussed mechanisms of CRPC development and summarized the overall prevalence of CRPC subtypes; interestingly, AR low/negative CRPC represented a considerable proportion of diagnoses. Because these subtypes cannot be effectively treated with AR-targeted therapeutics, a better understanding of AR low/negative subtypes could lead to better treatment strategies and increased survival.
Collapse
Affiliation(s)
- Jordan E Vellky
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Cancer Biology Graduate Program, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|