1
|
Park S, Das R, Nhiem NX, Jeong SB, Kim M, Kim D, Oh HI, Cho SH, Kwon OB, Choi JH, Park CS, Kim SR, Moon UY, Cha B, Choi DK, Lee S, Namkung W, Woo J, Seo Y. ANO1-downregulation induced by schisandrathera D: a novel therapeutic target for the treatment of prostate and oral cancers. Front Pharmacol 2023; 14:1163970. [PMID: 37274097 PMCID: PMC10232832 DOI: 10.3389/fphar.2023.1163970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Anoctamin 1 (ANO1), a drug target for various cancers, including prostate and oral cancers, is an intracellular calcium-activated chloride ion channel that plays various physiopathological roles, especially in the induction of cancer growth and metastasis. In this study, we tested a novel compound isolated from Schisandra sphenanthera, known as schisandrathera D, for its inhibitory effect on ANO1. Schisandrathera D dose-dependently suppressed the ANO1 activation-mediated decrease in fluorescence of yellow fluorescent protein; however, it did not affect the adenosine triphosphate-induced increase in the intracellular calcium concentration or forskolin-induced cystic fibrosis transmembrane conductance regulator activity. Specifically, schisandrathera D gradually decreased the levels of ANO1 protein and significantly reduced the cell viability in ANO1-expressing cells when compared to those in ANO1-knockout cells. These effects could be attributed to the fact that schisandrathera D displayed better binding capacity to ANO1 protein than the previously known ANO1 inhibitor, Ani9. Finally, schisandrathera D increased the levels of caspase-3 and cleaved poly (ADP-ribose) polymerase 1, thereby indicating that its anticancer effect is mediated through apoptosis. Thus, this study highlights that schisandrathera D, which reduces ANO1 protein levels, has apoptosis-mediated anticancer effects in prostate and oral cancers, and thus, can be further developed into an anticancer agent.
Collapse
Affiliation(s)
- SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Raju Das
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine and Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Hanoi, Vietnam
| | - Sung Baek Jeong
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Minuk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI hub), Daegu, Republic of Korea
| | - Dongguk Kim
- Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI hub), Daegu, Republic of Korea
| | - Hye In Oh
- Underwood Division Economics, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jae-Hyeog Choi
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Chul Soon Park
- Department of Bio-nanomaterials, Bio Campus of Korea Polytechnics, Nonsan, Republic of Korea
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Uk Yeol Moon
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Boksik Cha
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sungwoo Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Yohan Seo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
2
|
Jiang Y, Shi C, Tian S, Zhi F, Shen X, Shang D, Tian J. Comprehensive molecular characterization of hypertension-related genes in cancer. CARDIO-ONCOLOGY 2022; 8:10. [PMID: 35513851 PMCID: PMC9069779 DOI: 10.1186/s40959-022-00136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022]
Abstract
Background During cancer treatment, patients have a significantly higher risk of developing cardiovascular complications such as hypertension. In this study, we investigated the internal relationships between hypertension and different types of cancer. Methods First, we comprehensively characterized the involvement of 10 hypertension-related genes across 33 types of cancer. The somatic copy number alteration (CNA) and single nucleotide variant (SNV) of each gene were identified for each type of cancer. Then, the expression patterns of hypertension-related genes were analyzed across 14 types of cancer. The hypertension-related genes were aberrantly expressed in different types of cancer, and some were associated with the overall survival of patients or the cancer stage. Subsequently, the interactions between hypertension-related genes and clinically actionable genes (CAGs) were identified by analyzing the co-expressions and protein–protein interactions. Results We found that certain hypertension-related genes were correlated with CAGs. Next, the pathways associated with hypertension-related genes were identified. The positively correlated pathways included epithelial to mesenchymal transition, hormone androgen receptor, and receptor tyrosine kinase, and the negatively correlated pathways included apoptosis, cell cycle, and DNA damage response. Finally, the correlations between hypertension-related genes and drug sensitivity were evaluated for different drugs and different types of cancer. The hypertension-related genes were all positively or negatively correlated with the resistance of cancer to the majority of anti-cancer drugs. These results highlight the importance of hypertension-related genes in cancer. Conclusions This study provides an approach to characterize the relationship between hypertension-related genes and cancers in the post-genomic era. Supplementary Information The online version contains supplementary material available at 10.1186/s40959-022-00136-z.
Collapse
|
3
|
Mao F, Yang C, Luo W, Wang Y, Xie J, Wang H. Peripheral blood lymphocyte subsets are associated with the clinical outcomes of prostate cancer patients. Int Immunopharmacol 2022; 113:109287. [DOI: 10.1016/j.intimp.2022.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|