1
|
Craven GB, Chu H, Sun JD, Carelli JD, Coyne B, Chen H, Chen Y, Ma X, Das S, Kong W, Zajdlik AD, Yang KS, Reisberg SH, Thompson PA, Lipford JR, Taunton J. Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation. Nature 2025; 637:205-214. [PMID: 39506119 DOI: 10.1038/s41586-024-08176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Somatic alterations in the oncogenic kinase AKT1 have been identified in a broad spectrum of solid tumours. The most common AKT1 alteration replaces Glu17 with Lys (E17K) in the regulatory pleckstrin homology domain1, resulting in constitutive membrane localization and activation of oncogenic signalling. In clinical studies, pan-AKT inhibitors have been found to cause dose-limiting hyperglycaemia2-6, which has motivated the search for mutant-selective inhibitors. We exploited the E17K mutation to design allosteric, lysine-targeted salicylaldehyde inhibitors with selectivity for AKT1 (E17K) over wild-type AKT paralogues, a major challenge given the presence of three conserved lysines near the allosteric site. Crystallographic analysis of the covalent inhibitor complex unexpectedly revealed an adventitious tetrahedral zinc ion that coordinates two proximal cysteines in the kinase activation loop while simultaneously engaging the E17K-imine conjugate. The salicylaldimine complex with AKT1 (E17K), but not that with wild-type AKT1, recruits endogenous Zn2+ in cells, resulting in sustained inhibition. A salicylaldehyde-based inhibitor was efficacious in AKT1 (E17K) tumour xenograft models at doses that did not induce hyperglycaemia. Our study demonstrates the potential to achieve exquisite residence-time-based selectivity for AKT1 (E17K) by targeting the mutant lysine together with Zn2+ chelation by the resulting salicylaldimine adduct.
Collapse
Affiliation(s)
- Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hang Chu
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Hao Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaolei Ma
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Wayne Kong
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Kin S Yang
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Liu J, Zhang R, Su T, Zhou Q, Gao L, He Z, Wang X, Zhao J, Xing Y, Sun F, Cai W, Wang X, Han J, Qin R, Désaubry L, Han B, Chen W. Targeting PHB1 to inhibit castration-resistant prostate cancer progression in vitro and in vivo. J Exp Clin Cancer Res 2023; 42:128. [PMID: 37210546 DOI: 10.1186/s13046-023-02695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is currently the main challenge for prostate cancer (PCa) treatment, and there is an urgent need to find novel therapeutic targets and drugs. Prohibitin (PHB1) is a multifunctional chaperone/scaffold protein that is upregulated in various cancers and plays a pro-cancer role. FL3 is a synthetic flavagline drug that inhibits cancer cell proliferation by targeting PHB1. However, the biological functions of PHB1 in CRPC and the effect of FL3 on CRPC cells remain to be explored. METHODS Several public datasets were used to analyze the association between the expression level of PHB1 and PCa progression as well as outcome in PCa patients. The expression of PHB1 in human PCa specimens and PCa cell lines was examined by immunohistochemistry (IHC), qRT-PCR, and Western blot. The biological roles of PHB1 in castration resistance and underlying mechanisms were investigated by gain/loss-of-function analyses. Next, in vitro and in vivo experiments were conducted to investigate the anti-cancer effects of FL3 on CRPC cells as well as the underlying mechanisms. RESULTS PHB1 expression was significantly upregulated in CRPC and was associated with poor prognosis. PHB1 promoted castration resistance of PCa cells under androgen deprivation condition. PHB1 is an androgen receptor (AR) suppressive gene, and androgen deprivation promoted the PHB1 expression and its nucleus-cytoplasmic translocation. FL3, alone or combined with the second-generation anti-androgen Enzalutamide (ENZ), suppressed CRPC cells especially ENZ-sensitive CRPC cells both in vitro and in vivo. Mechanically, we demonstrated that FL3 promoted trafficking of PHB1 from plasma membrane and mitochondria to nucleus, which in turn inhibited AR signaling as well as MAPK signaling, yet promoted apoptosis in CRPC cells. CONCLUSION Our data indicated that PHB1 is aberrantly upregulated in CRPC and is involved in castration resistance, as well as providing a novel rational approach for treating ENZ-sensitive CRPC.
Collapse
Affiliation(s)
- Junmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ranran Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Su
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianqian Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongyue He
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Zhao
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjie Cai
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinpei Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingying Han
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruixi Qin
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Laurent Désaubry
- INSERM, UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de L'Université de Strasbourg), Strasbourg, France
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China.
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Sayar E, Patel RA, Coleman IM, Roudier MP, Zhang A, Mustafi P, Low JY, Hanratty B, Ang LS, Bhatia V, Adil M, Bakbak H, Quigley DA, Schweizer MT, Hawley JE, Kollath L, True LD, Feng FY, Bander NH, Corey E, Lee JK, Morrissey C, Gulati R, Nelson PS, Haffner MC. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight 2023; 8:e162907. [PMID: 36821396 PMCID: PMC10132157 DOI: 10.1172/jci.insight.162907] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.
Collapse
Affiliation(s)
- Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martine P. Roudier
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Ailin Zhang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Pallabi Mustafi
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vipul Bhatia
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hasim Bakbak
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David A. Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Michael T. Schweizer
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica E. Hawley
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lori Kollath
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Felix Y. Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Neil H. Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Eva Corey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Colm Morrissey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| |
Collapse
|
4
|
The Androgen Regulated lncRNA NAALADL2-AS2 Promotes Tumor Cell Survival in Prostate Cancer. Noncoding RNA 2022; 8:ncrna8060081. [PMID: 36548180 PMCID: PMC9787508 DOI: 10.3390/ncrna8060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Castration resistance is the leading cause of death in men with prostate cancer. Recent studies indicate long noncoding RNAs (lncRNAs) to be important drivers of therapy resistance. The aim of this study was to identify differentially expressed lncRNAs in castration-resistant prostate cancer (CRPC) and to functionally characterize them in vitro. Tumor-derived RNA-sequencing data were used to quantify and compare the expression of 11,469 lncRNAs in benign, primary prostate cancer, and CRPC samples. CRPC-associated lncRNAs were selected for semi-quantitative PCR validation on 68 surgical tumor specimens. In vitro functional studies were performed by antisense-oligonucleotide-mediated lncRNA knockdown in hormone-sensitive prostate cancer (HSPC) and CRPC cell line models. Subsequently, cell proliferation, apoptosis, cell cycle, transcriptome and pathway analyses were performed using the appropriate assays. Transcriptome analysis of a prostate cancer tumor specimens unveiled NAALADL2-AS2 as a novel CRPC-upregulated lncRNA. The expression of NAALADL2-AS2 was found to be particularly high in HSPC in vitro models and to increase under androgen deprived conditions. NAALADL2-AS2 knockdown decreased cell viability and increased caspase activity and apoptotic cells. Cellular fractionization and RNA fluorescent in situ hybridization identified NAALADL2-AS2 as a nuclear transcript. Transcriptome and pathway analyses revealed that NAALADL2-AS2 modulates the expression of genes involved with cell cycle control and glycogen metabolism. We hypothesize that the nuclear lncRNA, NAALADL2-AS2, functions as a pro-survival signal in prostate cancer cells under pressure of targeted hormone therapy.
Collapse
|
5
|
Filon MJ, Gillette AA, Yang B, Khemees TA, Skala MC, Jarrard DF. Prostate cancer cells demonstrate unique metabolism and substrate adaptability acutely after androgen deprivation therapy. Prostate 2022; 82:1547-1557. [PMID: 35980831 PMCID: PMC9804183 DOI: 10.1002/pros.24428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) has been the standard of care for advanced hormone-sensitive prostate cancer (PC), yet tumors invariably develop resistance resulting in castrate-resistant PC. The acute response of cancer cells to ADT includes apoptosis and cell death, but a large fraction remains arrested but viable. In this study, we focused on intensively characterizing the early metabolic changes that result after ADT to define potential metabolic targets for treatment. METHODS A combination of mass spectrometry, optical metabolic imaging which noninvasively measures drug responses in cells, oxygen consumption rate, and protein expression analysis was used to characterize and block metabolic pathways over several days in multiple PC cell lines with variable hormone response status including ADT sensitive lines LNCaP and VCaP, and resistant C4-2 and DU145. RESULTS Mass spectrometry analysis of LNCaP pre- and postexposure to ADT revealed an abundance of glycolytic intermediates after ADT. In LNCaP and VCaP, a reduction in the optical redox ratio [NAD(P)H/FAD], extracellular acidification rate, and a downregulation of key regulatory enzymes for fatty acid and glutamine utilization was acutely observed after ADT. Screening several metabolic inhibitors revealed that blocking fatty acid oxidation and synthesis reversed this stress response in the optical redox ratio seen with ADT alone in LNCaP and VCaP. In contrast, both cell lines demonstrated increased sensitivity to the glycolytic inhibitor 2-Deoxy- d-glucose(2-DG) and maintained sensitivity to electron transport chain inhibitor Malonate after ADT exposure. ADT followed by 2-DG results in synergistic cell death, a result not seen with simultaneous administration. CONCLUSIONS Hormone-sensitive PC cells displayed altered metabolic profiles early after ADT including an overall depression in energy metabolism, induction of a quiescent/senescent phenotype, and sensitivity to selected metabolic inhibitors. Glycolytic blocking agents (e.g., 2-DG) as a sequential treatment after ADT may be promising.
Collapse
Affiliation(s)
- Mikolaj J. Filon
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Amani A. Gillette
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
| | - Bing Yang
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Tariq A. Khemees
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Melissa C. Skala
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
- Carbone Comprehensive Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - David F. Jarrard
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Carbone Comprehensive Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
- Molecular and Environmental Toxicology ProgramUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
6
|
Lombardo R, Rovesti L, Cicione A, Gravina C, Franco A, Stira J, Simone G, D'Annunzio S, Nacchia A, Papalia R, Mastroianni R, Collura D, Brassetti A, Vecchione A, Muto G, Gallucci M, Tubaro A, De Nunzio C. Serum levels of chromogranin are not predictive of poorly differentiated prostate cancer: Results from a multicenter radical prostatectomy cohort. Prostate 2022; 82:1400-1405. [PMID: 35923120 DOI: 10.1002/pros.24412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recently a possible link between elevated Chromogranin A (CgA) levels and poorly differentiated prostate cancer has been proposed. The aim of our study was to explore the association of CgA levels and the risk of poorly differentiated prostate cancer (PCa) in men undergoing radical retropubic prostatectomy (RRP). MATERIALS AND METHODS From 2012 onwards, 335 consecutive men undergoing RRP for PCa at three centers in Italy were enrolled into a prospective database. Body mass index (BMI) was calculated before RRP. Blood samples were collected and tested for total prostate-specific antigen (PSA) levels and chromogranin A (CgA). We evaluated the association between serum levels of CgA and upstaging and upgrading using logistic regression analyses. RESULTS Median age and preoperative PSA levels were 65 years (interquartile range [IQR]: 60-69) and 7.2 ng/ml (IQR: 5.3-10.4), respectively. Median BMI was 26.1 kg/m2 (IQR: 24-29) with 56 (16%) obese (BMI ≥ 30 kg/m2 ). Median CgA levels were 51 (39/71). Overall, 129/335 (38,5%) presented an upstaging, and 99/335 (30%) presented an upgrading. CgA was not a predictor of upstaging or upgrading on RP. CONCLUSIONS In our multicenter cohort of patients, CgA is not a predictor of poorly differentiated PCa on radical prostatectomy. According to our experience, CgA should not be considered a reliable marker to predict poorly differentiated or advanced prostate cancer.
Collapse
Affiliation(s)
- Riccardo Lombardo
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Lorenzo Rovesti
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Antonio Cicione
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Carmen Gravina
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Antonio Franco
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Jordi Stira
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Giuseppe Simone
- Department of Urology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Simone D'Annunzio
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Antonio Nacchia
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Rocco Papalia
- Department of Urology, "Campus Bio-Medico" University, Rome, Italy
| | | | - Devis Collura
- Department of Urology, "San Giovanni Bosco" Hospital, Turin, Italy
| | - Aldo Brassetti
- Department of Urology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Andrea Vecchione
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Giovanni Muto
- Department of Urology, "Campus Bio-Medico" University, Rome, Italy
| | - Michele Gallucci
- Department of Urology, "Campus Bio-Medico" University, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| |
Collapse
|
7
|
Pham MT, Gupta A, Gupta H, Vaghasia A, Skaist A, Garrison MA, Coulter JB, Haffner MC, Zheng SL, Xu J, DeStefano Shields C, Isaacs WB, Wheelan SJ, Nelson WG, Yegnasubramanian S. Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Mol Cancer Res 2022; 20:1013-1020. [PMID: 35452513 PMCID: PMC9262859 DOI: 10.1158/1541-7786.mcr-21-0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
A limited number of cell lines have fueled the majority of preclinical prostate cancer research, but their genomes remain incompletely characterized. Here, we utilized whole-genome linked-read sequencing for comprehensive characterization of phased mutations and rearrangements in the most commonly used cell lines in prostate cancer research including PC3, LNCaP, DU145, CWR22Rv1, VCaP, LAPC4, MDA-PCa-2b, RWPE-1, and four derivative castrate-resistant (CR) cell lines LNCaP_Abl, LNCaP_C42b, VCaP-CR, and LAPC4-CR. Phasing of mutations allowed determination of "gene-level haplotype" to assess whether genes harbored heterozygous mutations in one or both alleles. Phased structural variant analysis allowed identification of complex rearrangement chains consistent with chromothripsis and chromoplexy. In addition, comparison of parental and derivative CR lines revealed previously known and novel genomic alterations associated with the CR phenotype. IMPLICATIONS This study therefore comprehensively characterized phased genomic alterations in the commonly used prostate cancer cell lines, providing a useful resource for future prostate cancer research.
Collapse
Affiliation(s)
- Minh-Tam Pham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harshath Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ajay Vaghasia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - McKinzie A. Garrison
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan B. Coulter
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael C. Haffner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
| | - S. Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Christina DeStefano Shields
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B. Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah J. Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G. Nelson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
9
|
O'Reilly D, Buchanan PJ. Hypoxic Signaling Is Modulated by Calcium Channel, CaV1.3, in Androgen-Resistant Prostate Cancer. Bioelectricity 2022; 4:81-91. [PMID: 39350777 PMCID: PMC11441368 DOI: 10.1089/bioe.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Androgen deprivation therapy (ADT) remains a key treatment for advance prostate cancer (PCa), but resistance leads to terminal castrate-resistant prostate cancer (CRPC). Its development is linked to the emergence of a hypoxic tumor microenvironment and associated hypoxia inducible factor (HIF) signaling, which is known to be modulated by intracellular calcium. ADT is also known to upregulate store-operated calcium entry (SOCE) through voltage-gated calcium channel, CaV1.3. Consequently, the role of CaV1.3 in supporting hypoxic signaling and CRPC biology was explored. Materials Androgen-sensitive PCa LNCaP cells were cultured with and without ADT bicalutamide, alongside ADT-resistant CRPC cells (LNCaP-ABL), either in normal or low oxygen (O2) (1%) conditions. HIF-1α, CaV1.3, and androgen receptor (AR) gene expression was measured by qPCR and protein expression with Western blot in the presence or absence of siCaV1.3. SOCE was determined through Fura-2AM fluorescence measurement. Cell proliferation was quantified by WST-1 assay and survival by colony formation. Results CaV1.3 expression was increased during ADT but not hypoxia, correlating with an associated increase in SOCE. HIF-1α expression was upregulated by ADT under normal O2 conditions and increased during hypoxia across all cells but with a higher fold change in early ADT-resistant and CRPC cells. Under hypoxic conditions CaV1.3 small interfering RNA resulted in a significant reduction in HIF-1α expression for ADT-sensitive cells but increased in CRPC. A similar pattern was also observed for AR expression. Cell survival was found significantly reduced by siCaV1.3 under hypoxic conditions for all cells, with and without ADT. Whereas cell proliferation under the same conditions was reduced in CRPC only. Conclusion This study highlights that CaV1.3 can modulated HIF signaling and impact on PCa tumor biology under hypoxia, but further investigation is required to ascertain if this mediated through SOCE or a noncanonical mechanism.
Collapse
Affiliation(s)
- Debbie O'Reilly
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| | - Paul J Buchanan
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|