1
|
Tondar A, Irfan M, Sánchez-Herrero S, Athar H, Haqqi A, Bepari AK, Liñán LC, Hervás Marin D. In-silico structural and functional analysis of nonsynonymous single nucleotide polymorphisms in human FOLH1 gene. In Silico Pharmacol 2025; 13:32. [PMID: 40018382 PMCID: PMC11861814 DOI: 10.1007/s40203-025-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs), also known as missense SNPs, can seriously affect an individual's vulnerability to numerous diseases, including cancer. In this study, we conducted a comprehensive in-silico analysis to examine the structural and functional implications of nsSNPs within the Folate Hydrolase 1(FOLH1) gene, which encodes the Prostate-Specific Membrane Antigen (PSMA). A total of 504 SNPs were retrieved, and after filtering, 15 pathogenic nsSNPs were identified using five different in-silico tools. Three of these SNPs-R255H (rs375565491), R255C (rs201789325), and G168E (rs267602926)-were consistently predicted to be pathogenic across all in-silico tools. MutPred2 was used to predict the structural and functional consequences of the identified mutations. The analysis revealed multiple alterations in the PSMA protein, including changes in helical conformations, glycosylation patterns, transmembrane properties, and solvent accessibility. Furthermore, I-Mutant 2.0 analysis demonstrated a decrease in protein stability for most nsSNPs, except for rs267602926 (G168E), which was predicted to increase stability. Conservation analysis using ConSurf revealed varying degrees of amino acid conservation, with R255H and R255C identified as highly conserved residues, indicating their potential functional and structural significance. Additionally, post-translational modification (PTM) analysis indicated that while phosphorylation and methylation sites remained unchanged, specific glycosylation sites were lost in two pathogenic mutant variants (R255H and R255C), potentially affecting PSMA function and adversely impacting prostate cancer. Our findings highlight the importance of in silico studies to investigate the structural and functional impacts of FOLH1 nsSNPs on the PSMA protein. Such in silico studies can deepen our understanding of the roles of nsSNPs in prostate cancer onset, progression, and drug resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00319-3.
Collapse
Affiliation(s)
- Abtin Tondar
- Department of Computer Science, Multimedia and Telecommunication, Interuniversity Doctoral Program in Bioinformatics, Universitat Oberta de Catalunya, Barcelona (UOC), Spain
- Stanford Deep Data Research Center, Stanford University, Stanford, USA
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Punjab Pakistan
| | - Sergio Sánchez-Herrero
- Department of Computer Science, Multimedia and Telecommunication, Interuniversity Doctoral Program in Bioinformatics, Universitat Oberta de Catalunya, Barcelona (UOC), Spain
| | - Hafsa Athar
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Punjab Pakistan
| | - Aleena Haqqi
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Punjab Pakistan
- School of Medical Laboratory Technology, Minhaj University Lahore (MUL), Lahore, Punjab, Pakistan
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University (NSU), Dhaka, Bangladesh
| | - Laura Calvet Liñán
- Telecommunications and Systems Engineering Department, Universitat Autònoma de Barcelona (UAB), Sabadell, Spain
| | - David Hervás Marin
- Department of Applied Statistics and Operational Research, and Quality Alcoy, Universitat Politècnica de València (UPV), Alcoy, Spain
| |
Collapse
|
2
|
Mackay S, Oduor IO, Burch TC, Troyer DA, Semmes OJ, Nyalwidhe JO. Prostate-specific membrane antigen (PSMA) glycoforms in prostate cancer patients seminal plasma. Prostate 2024; 84:479-490. [PMID: 38151791 DOI: 10.1002/pros.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is a US Food and Drug Administration-approved theranostic target for prostate cancer (PCa). Although PSMA is known to be glycosylated, the composition and functional roles of its N-linked glycoforms have not been fully characterized. METHODS PSMA was isolated from pooled seminal plasma from low-risk grade Groups 1 and 2 PCa patients. Intact glycopeptides were analyzed by mass spectrometry to identify site-specific glycoforms. RESULTS We observed a rich distribution of PSMA glycoforms in seminal plasma from low and low-intermediate-risk PCa patients. Some interesting generalities can be drawn based on the predicted topology of PSMA on the plasma membrane. The glycoforms at ASN-459, ASN-476, and ASN-638 residues that are located at the basal domain facing the plasma membrane in cells, are predominantly high mannose glycans. ASN-76 which is located in the interdomain region adjacent to the apical domain of the protein shows a mixture of high mannose glycans and complex glycans, whereas ASN-121, ASN-195 and ASN-336 that are located and are exposed at the apical domain of the protein predominantly possess complex sialylated and fucosylated N-linked glycans. These highly accessible glycosites display the greatest diversity in isoforms across the patient samples. CONCLUSIONS Our study provides novel qualitative insights into PSMA glycoforms that are present in the seminal fluid of PCa patients. The presence of a rich diversity of glycoforms in seminal plasma provides untapped potential for glycoprotein biomarker discovery and as a clinical sample for noninvasive diagnostics of male urological disorders and diseases including PCa. Specifically, our glycomics approach will be critical in uncovering PSMA glycoforms with utility in staging and risk stratification of PCa.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Neonatal-Perinatal Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian O Oduor
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Neurology, Children's Hospital of the Kings Daughters, Norfolk, Virginia, USA
| | - Tanya C Burch
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Dean A Troyer
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Oliver J Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
3
|
Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. ACS OMEGA 2022; 7:29714-29727. [PMID: 36061737 PMCID: PMC9435049 DOI: 10.1021/acsomega.2c02265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The composition of N-linked glycans that are conjugated to the prostate-specific membrane antigen (PSMA) and their functional significance in prostate cancer progression have not been fully characterized. PSMA was isolated from two metastatic prostate cancer cell lines, LNCaP and MDAPCa2b, which have different tissue tropism and localization. Isolated PSMA was trypsin-digested, and intact glycopeptides were subjected to LC-HCD-EThcD-MS/MS analysis on a Tribrid Orbitrap Fusion Lumos mass spectrometer. Differential qualitative and quantitative analysis of site-specific N-glycopeptides was performed using Byonic and Byologic software. Comparative quantitative analysis demonstrates that multiple glycopeptides at asparagine residues 51, 76, 121, 195, 336, 459, 476, and 638 were in significantly different abundance in the two cell lines (p < 0.05). Biochemical analysis using endoglycosidase treatment and lectin capture confirm the MS and site occupancy data. The data demonstrate the effectiveness of the strategy for comprehensive analysis of PSMA glycopeptides. This approach will form the basis of ongoing experiments to identify site-specific glycan changes in PSMA isolated from disease-stratified clinical samples to uncover targets that may be associated with disease progression and metastatic phenotypes.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of North Carolina, Chapel Hill, North Carolina 27516, United States
| | - Naomi L. Hitefield
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of Georgia, Athens, Georgia 30602, United
States
| | - Ian O. Oduor
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Autumn B. Roberts
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Tanya C. Burch
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Raymond S. Lance
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Spokane
Urology, Spokane, Washington 99202, United States
| | - Tina D. Cunningham
- School of
Health Professions, Eastern Virginia Medical
School, Norfolk, Virginia 23507, United States
| | - Dean A. Troyer
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Oliver J. Semmes
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Julius O. Nyalwidhe
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
4
|
Campos D, Girgis M, Sanda M. Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis. Proteomics 2022; 22:e2100322. [PMID: 35700310 PMCID: PMC9349404 DOI: 10.1002/pmic.202100322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.
Collapse
Affiliation(s)
- Diana Campos
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
| | - Michael Girgis
- Department of BioengineeringVolgenau School of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Miloslav Sanda
- Max‐Planck‐Institut fuer Herz‐ und LungenforschungBad NauheimGermany
- Clinical and Translational Glycoscience Research CenterGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|