1
|
Skorupska-Stasiak A, Bystranowska D, Tran JB, Krężel A, Ożyhar A. Nesfatin-3 possesses divalent metal ion binding properties, which remain hidden in the nucleobindin-2 precursor protein. Cell Commun Signal 2023; 21:165. [PMID: 37386441 PMCID: PMC10308643 DOI: 10.1186/s12964-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Nucleobindin-2 (Nucb2) is a multidomain protein that, due to its structure, participates in many physiological processes. It was originally identified in several regions of the hypothalamus. However, more recent studies have redefined and extended the function of Nucb2 far beyond its initially observed role as a negative modulator of food intake. RESULTS Previously, we described Nucb2 as structurally divided into two parts: the Zn2+-sensitive N-terminal half and the Ca2+-sensitive C-terminal half. Here, we investigated the structural and biochemical properties of its C-terminal half, which, after posttranslational processing, yields the formation of a fully uncharacterized peptide product known as nesfatin-3. Nesfatin-3 likely contains all the key respective structural regions of Nucb2. Hence, we expected that its molecular properties and affinity toward divalent metal ions might resemble those of Nucb2. Surprisingly, the obtained results showed that the molecular properties of nesftain-3 were completely different from those of its precursor protein. Moreover, we designed our work as a comparative analysis of two nesfatin-3 homologs. We noticed that in their apo forms, both proteins had similar shapes and existed in solution as extended molecules. They both interacted with divalent metal ions, and this interaction manifested itself in a compaction of the protein molecules. Despite their similarities, the differences between the homologous nesfatin-3s were even more informative. Each of them favored interaction with a different metal cation and displayed unique binding affinities compared either to each other or to Nucb2. CONCLUSIONS The observed alterations suggested different from Nucb2 physiological roles of nesfatin-3 and different impacts on the functioning of the tissues and on metabolism and its control. Our results clearly demonstrated that nesfatin-3 possessed divalent metal ion binding properties, which remained hidden in the nucleobindin-2 precursor protein.
Collapse
Affiliation(s)
- Anna Skorupska-Stasiak
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Józef Ba Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| |
Collapse
|
2
|
Linse S, Thulin E, Nilsson H, Stigler J. Benefits and constrains of covalency: the role of loop length in protein stability and ligand binding. Sci Rep 2020; 10:20108. [PMID: 33208843 PMCID: PMC7674454 DOI: 10.1038/s41598-020-76598-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
Protein folding is governed by non-covalent interactions under the benefits and constraints of the covalent linkage of the backbone chain. In the current work we investigate the influence of loop length variation on the free energies of folding and ligand binding in a small globular single-domain protein containing two EF-hand subdomains—calbindin D9k. We introduce a linker extension between the subdomains and vary its length between 1 to 16 glycine residues. We find a close to linear relationship between the linker length and the free energy of folding of the Ca2+-free protein. In contrast, the linker length has only a marginal effect on the Ca2+ affinity and cooperativity. The variant with a single-glycine extension displays slightly increased Ca2+ affinity, suggesting that the slightly extended linker allows optimized packing of the Ca2+-bound state. For the extreme case of disconnected subdomains, Ca2+ binding becomes coupled to folding and assembly. Still, a high affinity between the EF-hands causes the non-covalent pair to retain a relatively high apparent Ca2+ affinity. Our results imply that loop length variation could be an evolutionary option for modulating properties such as protein stability and turnover without compromising the energetics of the specific function of the protein.
Collapse
Affiliation(s)
- Sara Linse
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | - Eva Thulin
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Hanna Nilsson
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Johannes Stigler
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden. .,Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany.
| |
Collapse
|
3
|
Abstract
The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens. The posttranslational Ca2+-dependent “clip-and-link” activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free ε-amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis. The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a “twisted-amide” activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.
Collapse
|
4
|
Tong M, Wang Q, Wang Y, Chen G. Structures and energies of the transition between two conformations of the alternate frame folding calbindin-D9k protein: a theoretical study. RSC Adv 2015. [DOI: 10.1039/c5ra11234f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We carried out molecular dynamics simulations and energy calculations for the two states of the alternate frame folding (AFF) calbindin-D9k protein and their conformational transition in Ca2+-free form to address their dynamical transition mechanism.
Collapse
Affiliation(s)
- Mingqiong Tong
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Qing Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
5
|
Huma ZE, Ludeman JP, Wilkinson BL, Payne RJ, Stone MJ. NMR characterization of cooperativity: fast ligand binding coupled to slow protein dimerization. Chem Sci 2014. [DOI: 10.1039/c4sc00131a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a general approach for analysis of 2D NMR spectra to evaluate the cooperativity of ligand binding and protein dimerization in coupled systems.
Collapse
Affiliation(s)
- Zil E Huma
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton, Australia
| | - Justin P. Ludeman
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton, Australia
| | | | | | - Martin J. Stone
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton, Australia
| |
Collapse
|
6
|
Zhao H, Schuck P. Global multi-method analysis of affinities and cooperativity in complex systems of macromolecular interactions. Anal Chem 2012; 84:9513-9. [PMID: 23020071 PMCID: PMC3491091 DOI: 10.1021/ac302357w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cooperativity, multisite, and multicomponent interactions are hallmarks of biological systems of interacting macromolecules. Their thermodynamic characterization is often very challenging due to the notoriously low information content of binding isotherms. We introduce a strategy for the global multimethod analysis of data from multiple techniques (GMMA) that exploits enhanced information content emerging from the mutual constraints of the simultaneous modeling of orthogonal observables from calorimetric, spectroscopic, hydrodynamic, biosensing, or other thermodynamic binding experiments. We describe new approaches to address statistical problems that arise in the analysis of dissimilar data sets. The GMMA approach can significantly increase the complexity of interacting systems that can be accurately thermodynamically characterized.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Jiang W, Luo Y, Maragliano L, Roux B. Calculation of Free Energy Landscape in Multi-Dimensions with Hamiltonian-Exchange Umbrella Sampling on Petascale Supercomputer. J Chem Theory Comput 2012; 8:4672-80. [PMID: 26605623 DOI: 10.1021/ct300468g] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.
Collapse
Affiliation(s)
- Wei Jiang
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Yun Luo
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Luca Maragliano
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , 929 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Argonne Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States.,Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , 929 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Osuna J, Flores H, Gaytán P. A reporter system that discriminates EF-hand-sensor motifs from signal-modulators at the single-motif level. FEBS Lett 2012; 586:3398-403. [DOI: 10.1016/j.febslet.2012.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/07/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
|
9
|
Stratton MM, McClendon S, Eliezer D, Loh SN. Structural characterization of two alternate conformations in a calbindin D₉k-based molecular switch. Biochemistry 2011; 50:5583-9. [PMID: 21618991 PMCID: PMC3140711 DOI: 10.1021/bi102040g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have demonstrated that calbindin D(9k) can be converted into a calcium-sensing switch (calbindin-AFF) by duplicating the C-terminal half of the protein (residues 44-75) and appending it to the N-terminus (creating residues 44'-75'). This re-engineering results in a ligand-driven interconversion between two native folds: the wild-type structure (N) and a circularly permuted form (N'). The switch between N and N' is predicted to involve exchange of the 44-75 and 44'-75' segments, possibly linked to their respective folding and unfolding. Here we present direct structural evidence supporting the existence of N and N'. To isolate the N' and N conformations, we introduced the knockdown Ca(2+) binding mutation Glu → Gln at position 65 (E65Q mutant) or at the analogous position 65' (E65'Q mutant). E65Q and E65'Q are therefore expected to adopt conformations N' and N, respectively, in the presence of calcium. Though the amino acid sequences of E65Q and E65'Q differ at only these two positions, nuclear magnetic resonance resonance assignments, chemical shifts, and paramagnetic relaxation enhancement data reveal that they take on separate structures when bound to calcium. Both proteins are comprised of a well-folded domain and a disordered region. However, the segment that is disordered in E65Q (residues 44-75) is folded in E65'Q, and the region that is disordered in E65'Q (residues 44'-75') is structured in E65Q. The results demonstrate that the N' N' conformational change is mediated by a mutually exclusive folding reaction in which folding of one segment of the protein is coupled to unfolding of another segment, and vice versa.
Collapse
Affiliation(s)
- Margaret M. Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, United States
| | - Sebastian McClendon
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, United States
| | - David Eliezer
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, United States
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
10
|
Permyakov SE, Ismailov RG, Xue B, Denesyuk AI, Uversky VN, Permyakov EA. Intrinsic disorder in S100 proteins. MOLECULAR BIOSYSTEMS 2011; 7:2164-80. [PMID: 21528128 DOI: 10.1039/c0mb00305k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the members of the largest subfamily of the EF-hand proteins, S100 proteins, are evolutionarily young, their functional diversity is extremely broad, partly due to their ability to adapt to various targets. This feature is a hallmark of intrinsically disordered proteins (IDPs), but none of the S100 proteins are recognized as IDPs. S100 are predicted to be enriched in intrinsic disorder, with 62% of them being predicted to be disordered by at least one of the predictors: 31% are recognized as 'molten globules' and 15% are shown to be in extended disordered form. The disorder level of predicted disordered S100 regions is conserved compared to that of more structured regions. The central disordered stretch corresponds to the major part of pseudo EF-hand loop, helix II, hinge region, and an initial part of helix III. It contains about half of known sites of enzymatic post-translational modifications (PTMs), confirming that this region can be flexible in vivo. Most of the internal residues missing in tertiary structures belong to the hinge. Both hinge and pseudo EF-hand loop correspond to the local maxima of the PONDR® VSL2 score and are shown to be evolutionary hotspots, leading to gain of new functional properties. The action of PTMs is shown to be destabilizing, in contrast with the effect of metal-binding or S100 dimerization. Formation of the S100 heterodimers relies on the interplay between the structural rigidity of one of the S100 monomers and the flexibility of another monomer. The ordered regions dominate in the S100 homodimerization sites. Target-binding sites generally consist of distant regions, drastically differing in their disorder level. The disordered region comprising most of the hinge and the N-terminal half of helix III is virtually not involved into dimerization, being intended solely for target recognition. The structural flexibility of this region is essential for recognition of diverse target proteins. At least 86% of multiple interactions of S100 proteins with binding partners are attributed to the S100 proteins predicted to be disordered. Overall, the intrinsic disorder is inherent to many S100 proteins and is vital for activity and functional diversity of the family.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Alternate frame folding (AFF) is a mechanism by which conformational change can be engineered into a protein. The protein structure switches from the wild-type fold (N) to a circularly-permuted fold (N'), or vice versa, in response to a signaling event such as ligand binding. Despite the fact that the two native states have similar structures, their interconversion involves folding and unfolding of large parts of the molecule. This rearrangement is reported by fluorescent groups whose relative proximities change as a result of the order-disorder transition. The nature of the conformational change is expected to be similar from protein to protein; thus, it may be possible to employ AFF as a general method to create optical biosensors. Toward that goal, we test basic aspects of the AFF mechanism using the AFF variant of calbindin D(9k). A simple three-state model for fold switching holds that N and N' interconvert through the unfolded state. This model predicts that the fundamental properties of the switch--calcium binding affinity, signal response (i.e., fluorescence change upon binding), and switching rate--can be controlled by altering the relative stabilities of N and N'. We find that selectively destabilizing N or N' changes the equilibrium properties of the switch (binding affinity and signal response) in accordance with the model. However, kinetic data indicate that the switching pathway does not require whole-molecule unfolding. The rate is instead limited by unfolding of a portion of the protein, possibly in concert with folding of a corresponding region.
Collapse
Affiliation(s)
- Margaret M. Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse New York 13210
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse New York 13210
| |
Collapse
|
12
|
Huang Y, Zhou Y, Wong HC, Chen Y, Chen Y, Wang S, Castiblanco A, Liu A, Yang JJ. A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+. FEBS J 2009; 276:5589-97. [PMID: 19694801 DOI: 10.1111/j.1742-4658.2009.07240.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is responsible for activating the Ca(2+) release-activated Ca(2+) (CRAC) channel by first sensing the changes in Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)) via its luminal canonical EF-hand motif and subsequently oligomerizing to interact with the CRAC channel pore-forming subunit Orai1. In this work, we applied a grafting approach to obtain the intrinsic metal-binding affinity of the isolated EF-hand of STIM1, and further investigated its oligomeric state using pulsed-field gradient NMR and size-exclusion chromatography. The canonical EF-hand bound Ca(2+) with a dissociation constant at a level comparable with [Ca(2+)](ER) (512 +/- 15 microm). The binding of Ca(2+) resulted in a more compact conformation of the engineered protein. Our results also showed that D to A mutations at Ca(2+)-coordinating loop positions 1 and 3 of the EF-hand from STIM1 led to a 15-fold decrease in the metal-binding affinity, which explains why this mutant was insensitive to changes in Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)) and resulted in constitutive punctae formation and Ca(2+) influx. In addition, the grafted single EF-hand motif formed a dimer regardless of the presence of Ca(2+), which conforms to the EF-hand paring paradigm. These data indicate that the STIM1 canonical EF-hand motif tends to dimerize for functionality in solution and is responsible for sensing changes in [Ca(2+)](ER).
Collapse
Affiliation(s)
- Yun Huang
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen N, Ye Y, Zou J, Li S, Wang S, Martin A, Wohlhueter R, Yang JJ. Fluorescence complementation via EF-hand interactions. J Biotechnol 2009; 142:205-13. [PMID: 19500621 PMCID: PMC2866105 DOI: 10.1016/j.jbiotec.2009.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 11/20/2022]
Abstract
Fluorescence complementation technology with fluorescent proteins is a powerful approach to investigate molecular recognition by monitoring fluorescence enhancement when non-fluorescent fragments of fluorescent proteins are fused with target proteins, resulting in a new fluorescent complex. Extension of the technology to calcium-dependent protein-protein interactions has, however, rarely been reported. Here, a linker containing trypsin cleavage sites was grafted onto enhanced green fluorescent protein (EGFP). Under physiological conditions, a modified fluorescent protein, EGFP-T1, was cleaved into two major fragments which continue to interact with each other, exhibiting strong optical and fluorescence signals. The larger fragment, comprised of amino acids 1-172, including the chromophore, retains only weak fluorescence. Strong green fluorescence was observed when plasmid DNA encoding complementary EGFP fragments fused to the EF-hand motifs of calbindin D9k (EF1 and EF2) were co-transfected into HeLa cells, suggesting that chromophore maturation and fluorescence complementation from EGFP fragments can be accomplished intracellularly by reassembly of EF-hand motifs, which have a strong tendency for dimerization. Moreover, an intracellular calcium increase upon addition of a calcium ionophore, ionomycin in living cells, results in an increase of fluorescence signal. This novel application of calcium-dependent fluorescence complementation has the potential to monitor protein-protein interactions triggered by calcium signalling pathways in living cells.
Collapse
Affiliation(s)
- Ning Chen
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30302, USA
| | - Yiming Ye
- Centers for Disease Control and Prevention, Atlanta, GA 30302, USA
| | - Jin Zou
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30302, USA
| | - Shunyi Li
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30302, USA
| | - Siming Wang
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30302, USA
| | - Amy Martin
- Centers for Disease Control and Prevention, Atlanta, GA 30302, USA
| | | | - Jenny J. Yang
- Department of Chemistry, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
14
|
Marlatt NM, Boys BL, Konermann L, Shaw GS. Formation of Monomeric S100B and S100A11 Proteins at Low Ionic Strength. Biochemistry 2009; 48:1954-63. [DOI: 10.1021/bi802086a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole M. Marlatt
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brian L. Boys
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gary S. Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada, and Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
15
|
Stratton MM, Mitrea DM, Loh SN. A Ca2+-sensing molecular switch based on alternate frame protein folding. ACS Chem Biol 2008; 3:723-32. [PMID: 18947182 PMCID: PMC2769504 DOI: 10.1021/cb800177f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Existing strategies for creating biosensors mainly rely on large conformational changes to transduce a binding event to an output signal. Most molecules, however, do not exhibit large-scale structural changes upon substrate binding. Here, we present a general approach (alternate frame folding, or AFF) for engineering allosteric control into ligand binding proteins. AFF can in principle be applied to any protein to establish a binding-induced conformational change, even if none exists in the natural molecule. The AFF design duplicates a portion of the amino acid sequence, creating an additional "frame" of folding. One frame corresponds to the wild-type sequence, and folding produces the normal structure. Folding in the second frame yields a circularly permuted protein. Because the two native structures compete for a shared sequence, they fold in a mutually exclusive fashion. Binding energy is used to drive the conformational change from one fold to the other. We demonstrate the approach by converting the protein calbindin D(9k) into a molecular switch that senses Ca2+. The structures of Ca2+-free and Ca2+-bound calbindin are nearly identical. Nevertheless, the AFF mechanism engineers a robust conformational change that we detect using two covalently attached fluorescent groups. Biological fluorophores can also be employed to create a genetically encoded sensor. AFF should be broadly applicable to create sensors for a variety of small molecules.
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
16
|
Carey J, Lindman S, Bauer M, Linse S. Protein reconstitution and three-dimensional domain swapping: benefits and constraints of covalency. Protein Sci 2007; 16:2317-33. [PMID: 17962398 PMCID: PMC2211703 DOI: 10.1110/ps.072985007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.
Collapse
Affiliation(s)
- Jannette Carey
- Chemistry Department, Princeton University, NJ 08544-1009, USA.
| | | | | | | |
Collapse
|
17
|
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 2007; 405:199-221. [PMID: 17590154 DOI: 10.1042/bj20070255] [Citation(s) in RCA: 657] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.
Collapse
Affiliation(s)
- Jessica L Gifford
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
18
|
Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ. Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 2007; 65:643-55. [PMID: 16981205 DOI: 10.1002/prot.21139] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The S100 proteins are exclusively expressed in vertebrates and are the largest subgroup within the superfamily of EF-hand Ca2(+)-binding proteins Generally, S100 proteins are organized as tight homodimers (some as heterodimers). Each subunit is composed of a C-terminal, 'canonical' EF-hand, common to all EF-hand proteins, and a N-terminal, 'pseudo' EF-hand, characteristic of S100 proteins. Upon Ca2(+)-binding, the C-terminal EF-hand undergoes a large conformational change resulting in the exposure of a hydrophobic surface responsible for target binding A unique feature of this protein family is that some members are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via the Receptor for Advanced Glycation Endproducts, RAGE. Recently, larger assemblies of some S100 proteins (hexamers, tetramers, octamers) have been also observed and are suggested to be the active extracellular species required for receptor binding and activation through receptor multimerization Most S100 genes are located in a gene cluster on human chromosome 1q21, a region frequently rearranged in human cancer The functional diversification of S100 proteins is achieved by their specific cell- and tissue-expression patterns, structural variations, different metal ion binding properties (Ca2+, Zn2+ and Cu2+) as well as their ability to form homo-, hetero- and oligomeric assemblies Here, we review the most recent developments focussing on the biological functions of the S100 proteins and we discuss the presently available S100-specific mouse models and their possible use as human disease models In addition, the S100-RAGE interaction and the activation of various cellular pathways will be discussed. Finally, the close association of S100 proteins with cardiomyopathy, cancer, inflammation and brain diseases is summarized as well as their use in diagnosis and their potential as drug targets to improve therapies in the future.
Collapse
Affiliation(s)
- C W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Switzerland.
| | | | | |
Collapse
|
20
|
Structural aspects of calcium-binding proteins and their interactions with targets. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J Biol Chem 2006; 281:35855-62. [PMID: 17020874 DOI: 10.1074/jbc.m608247200] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) has recently been identified as a key player in store-operated Ca2+ entry. Endoplasmic reticulum (ER) luminal Ca2+ depletion results in STIM1 redistribution from ER membrane homogeneity to distinctly localized aggregates near the plasma membrane; these changes precede and are linked to cytoplasmic Ca2+ influx via Ca2+ release-activated channels (CRACs). The molecular mechanisms initiating ER STIM1 redistribution and plasma membrane CRAC activity are not well understood. We recombinantly expressed the Ca2+-sensing region of STIM1 consisting of the EF-hand together with the sterile alpha-motif (SAM) domain (EF-SAM) to investigate its Ca2+-related conformational and biochemical features. We demonstrate that Ca2+-loaded EF-SAM (holo) contains high alpha-helicity, whereas EF-SAM in the absence of Ca2+ (apo) is much less compact. Accordingly, the melting temperature (Tm) of the holoform is approximately 25 degrees C higher than apoform; heat and urea-derived thermodynamic parameters indicate a Ca2+-induced stabilization of 3.2 kcal mol(-1). We show that holoEF-SAM exists as a monomer, whereas apoEF-SAM readily forms a dimer and/or oligomer, and that oligomer to monomer transitions and vice versa are at least in part mediated by changes in surface hydrophobicity. Additionally, we find that the Ca2+ binding affinity of EF-SAM is relatively low with an apparent dissociation constant (Kd) of approximately 0.2-0.6 mM and a binding stoichiometry of 1. Our results suggest that EF-SAM actively participates in and is the likely the molecular trigger initiating STIM1 punctae formation via large conformational changes. The low Ca2+ affinity of EF-SAM is reconciled with the confirmed role of STIM1 as an ER Ca2+ sensor.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Division of Signaling Biology and Department of Medical Biophysics, Ontario Cancer Institute and University of Toronto, Toronto M5G 1L7, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Dell'Orco D, Seeber M, De Benedetti PG, Fanelli F. Probing fragment complementation by rigid-body docking: in silico reconstitution of calbindin D9k. J Chem Inf Model 2005; 45:1429-38. [PMID: 16180920 DOI: 10.1021/ci0501995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment complementation is gaining an increasing impact as a nonperturbing method to probe noncovalent interactions within protein supersecondary structures. In this study, the fast Fourier transform rigid-body docking algorithm ZDOCK has been employed for in silico reconstitution of the calcium binding protein calbindin D9k, from its two EF-hands subdomains, namely, EF1 (residues 1-43) and EF2 (residues 44-75). The EF1 fragment has been used both in its wild type and in nine mutant forms, in line with in vitro experiments. Consistent with in vitro data, ZDOCK reconstituted the proper fold of wild-type and mutated calbindin, locating the nativelike structures (i.e., holding a root-mean-square deviation < 1 A with respect to the X-ray structure) among the first 10 top-scored solutions out of 4000. Moreover, the three independent in silico reconstitutions of wild-type calbindin ranked a nativelike structure at the top of the output list, that is, the best scored one. The algorithm has been also successfully challenged in reconstituting the EF2 homodimer from two identical copies of the monomer. Furthermore, quantitative models consisting of linear correlations between thermodynamic data and ZDOCK scores were built, providing a tested tool for very fast in silico predictions of the free energy of association of protein-protein complexes solved at the atomic level and known to not undergo significant conformational changes upon binding.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry and Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy
| | | | | | | |
Collapse
|
23
|
Dell'Orco D, Xue WF, Thulin E, Linse S. Electrostatic contributions to the kinetics and thermodynamics of protein assembly. Biophys J 2004; 88:1991-2002. [PMID: 15596501 PMCID: PMC1305251 DOI: 10.1529/biophysj.104.049189] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Biophysical Chemistry, Lund University, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|