1
|
Herrera-Rodríguez AM, Dasanna AK, Daday C, Cruz-Chú ER, Aponte-Santamaría C, Schwarz US, Gräter F. The role of flow in the self-assembly of dragline spider silk proteins. Biophys J 2023; 122:4241-4253. [PMID: 37803828 PMCID: PMC10645567 DOI: 10.1016/j.bpj.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/14/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.
Collapse
Affiliation(s)
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Eduardo R Cruz-Chú
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ulrich S Schwarz
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Papež P, Merzel F, Praprotnik M. Rotational Dynamics of a Protein under Shear Flow Studied by the Eckart Frame Formalism. J Phys Chem B 2023; 127:7231-7243. [PMID: 37556834 PMCID: PMC10461304 DOI: 10.1021/acs.jpcb.3c02324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Indexed: 08/11/2023]
Abstract
Proteins are natural polymers that play an essential role in both living organisms and biotechnological applications. During certain bioprocessing steps, they can be exposed to significant mechanical stress induced by, for example, shear flow or sonication, resulting in reduced therapeutic efficacy, aggregation, or even a loss of activity. For this reason, there is a need to understand and determine the susceptibility of the protein activity to the experienced mechanical stress. To acquire this knowledge, it is necessary to study the rotational dynamics of the protein. Commonly, the rotational dynamics of soft molecules is interpreted based on a theoretical analysis performed in an inertial laboratory frame. However, the obtained angular velocity mixes pure rotations and vibrations with angular momentum, consequently lacking a clear dynamical interpretation. On the other hand, the use of the noninertial internal Eckart frame allows the determination of pure angular velocity as it minimizes the coupling between the rotational and vibrational degrees of freedom. In the present work, by conducting open-boundary molecular dynamics simulations and exploiting the Eckart frame formalism, we study the rotational dynamics of a small protein under the shear flow of various strengths. Our results show that the angular velocity increases nonlinearly with increasing shear rate. Furthermore, the protein gains vibrational angular momentum at higher shear rates, which is reflected in the higher angular velocity computed by employing the Eckart frame formalism and confirmed by analysis of the contributions to the total kinetic energy of the biomolecule.
Collapse
Affiliation(s)
- Petra Papež
- Theory
Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory
Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Matej Praprotnik
- Theory
Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Lamura A. Self-Attractive Semiflexible Polymers under an External Force Field. Polymers (Basel) 2022; 14:polym14214762. [PMID: 36365755 PMCID: PMC9658670 DOI: 10.3390/polym14214762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The dynamical response of a tethered semiflexible polymer with self-attractive interactions and subjected to an external force field is numerically investigated by varying stiffness and self-interaction strength. The chain is confined in two spatial dimensions and placed in contact with a heat bath described by the Brownian multi-particle collision method. For strong self-attraction the equilibrium conformations range from compact structures to double-stranded chains, and to rods when increasing the stiffness. Under the external field at small rigidities, the initial close-packed chain is continuously unwound by the force before being completely elongated. For double-stranded conformations the transition from the folded state to the open one is sharp being steeper for larger stiffnesses. The discontinuity in the transition appears in the force-extension relation, as well as in the probability distribution function of the gyration radius. The relative deformation with respect to the equilibrium case along the direction normal to the force is found to decay as the inverse of the applied force.
Collapse
Affiliation(s)
- Antonio Lamura
- Istituto Applicazioni Calcolo, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
4
|
Hakala T, Yates EV, Challa PK, Toprakcioglu Z, Nadendla K, Matak-Vinkovic D, Dobson CM, Martínez R, Corzana F, Knowles TPJ, Bernardes GJL. Accelerating Reaction Rates of Biomolecules by Using Shear Stress in Artificial Capillary Systems. J Am Chem Soc 2021; 143:16401-16410. [PMID: 34606279 PMCID: PMC8517977 DOI: 10.1021/jacs.1c03681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.
Collapse
Affiliation(s)
- Tuuli
A. Hakala
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Emma V. Yates
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pavan K. Challa
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zenon Toprakcioglu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Karthik Nadendla
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dijana Matak-Vinkovic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M. Dobson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Rodrigo Martínez
- Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Universidad de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Walinda E, Morimoto D, Shirakawa M, Scheler U, Sugase K. Visualizing protein motion in Couette flow by all-atom molecular dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129383. [DOI: 10.1016/j.bbagen.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022]
|
6
|
Szymczak P, Cieplak M. Hydrodynamic effects in proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033102. [PMID: 21406855 DOI: 10.1088/0953-8984/23/3/033102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.
Collapse
Affiliation(s)
- Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland.
| | | |
Collapse
|
7
|
Singh AR, Giri D, Kumar S. Force induced unfolding of biopolymers in a cellular environment: a model study. J Chem Phys 2009; 131:065103. [PMID: 19691413 DOI: 10.1063/1.3197010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effect of molecular crowding and confinement experienced by protein in the cell during unfolding has been studied by modeling a linear polymer chain on a percolation cluster. It is known that internal structure of the cell changes in time, however, they do not change significantly from their initial structure. In order to model this we introduce the correlation among the different disorder realizations. It was shown that the force-extension behavior for correlated disorder in both constant force ensemble and constant distance ensemble is significantly different than the one obtained in absence of molecular crowding.
Collapse
Affiliation(s)
- Amit Raj Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
8
|
Ge H, Jin F, Li J, Wu C. How Much Force Is Needed To Stretch a Coiled Chain in Solution? Macromolecules 2009. [DOI: 10.1021/ma9005523] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Ge
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Fan Jin
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Junfang Li
- The Hefei National Laboratory of Physical Science at Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- The Hefei National Laboratory of Physical Science at Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Singh AR, Giri D, Kumar S. Effects of molecular crowding on stretching of polymers in poor solvent. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051801. [PMID: 19518472 DOI: 10.1103/physreve.79.051801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 01/28/2009] [Indexed: 05/27/2023]
Abstract
We consider a linear polymer chain in a disordered environment modeled by percolation clusters on a square lattice. The disordered environment is meant to roughly represent molecular crowding as seen in cells. The model may be viewed as the simplest representation of biopolymers in a cell. We show the existence of intermediate states during stretching arising as a consequence of molecular crowding. In the constant distance ensemble the force-extension curves exhibit oscillations. We observe the emergence of two or more peaks in the probability distribution curves signaling the coexistence of different states and indicating that the transition is discontinuous unlike what is observed in the absence of molecular crowding.
Collapse
Affiliation(s)
- Amit Raj Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
| | | | | |
Collapse
|
10
|
Rajesh R, Giri D, Jensen I, Kumar S. Role of pulling direction in understanding the energy landscape of proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:021905. [PMID: 18850863 DOI: 10.1103/physreve.78.021905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Indexed: 05/26/2023]
Abstract
Single-molecule force spectroscopy provide details of the underlying energy surfaces of proteins which are essential to the understanding of their unfolding process. Recently, it has been observed experimentally that by pulling proteins in different directions relative to their secondary structure, one can gain a better understanding of the shape of the energy landscape. We consider simple lattice models which are anisotropic in nature to study the response of a force in unfolding of a polymer. Our analytical solution of the model, supported by extensive numerical calculations, reveal that the force temperature diagrams are very different depending on the direction of the applied force. We find that either unzipping or shearing kind transitions dominate the dynamics of the unfolding process depending solely on the direction of the applied force.
Collapse
Affiliation(s)
- R Rajesh
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India
| | | | | | | |
Collapse
|
11
|
Abstract
Stretching of a protein by a fluid flow is compared to that in a force-clamp apparatus. The comparison is made within a simple topology-based dynamical model of a protein in which the effects of the flow are implemented using Langevin dynamics. We demonstrate that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.
Collapse
Affiliation(s)
- P Szymczak
- Institute of Theoretical Physics, Warsaw University, ulica Hoza 69, 00-681 Warsaw, Poland.
| | | |
Collapse
|
12
|
Kumar S, Jensen I, Jacobsen JL, Guttmann AJ. Role of conformational entropy in force-induced biopolymer unfolding. PHYSICAL REVIEW LETTERS 2007; 98:128101. [PMID: 17501157 DOI: 10.1103/physrevlett.98.128101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Indexed: 05/15/2023]
Abstract
A statistical mechanical description of flexible and semiflexible polymer chains in a poor solvent is developed in the constant force and constant distance ensembles. We predict the existence of many intermediate states at low temperatures stabilized by the force. A unified response to pulling and compressing forces has been obtained in the constant distance ensemble. We show the signature of a crossover length which increases linearly with the chain length. Below this crossover length, the critical force of unfolding decreases with temperature, while above, it increases with temperature. For stiff chains, we report for the first time sawtoothlike behavior in the force-extension curves which has been seen earlier in the case of protein unfolding.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | |
Collapse
|
13
|
Kumar S, Giri D. Does changing the pulling direction give better insight into biomolecules? PHYSICAL REVIEW LETTERS 2007; 98:048101. [PMID: 17358815 DOI: 10.1103/physrevlett.98.048101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Indexed: 05/14/2023]
Abstract
Single-molecule manipulation techniques reveal that the mechanical resistance of a protein depends on the direction of the applied force. Using a lattice model of polymers, we show that changing the pulling direction leads to different phase diagrams. The simple model proposed here indicates that in one case the system undergoes a transition akin to the unzipping of a beta sheet, while in the other case the transition is of a shearing (slippage) nature. Our results are qualitatively similar to experimental results. This demonstrates the importance of varying the pulling direction since this may yield enhanced insights into the molecular interactions responsible for the stability of biomolecules.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
14
|
Abstract
Protein molecules typically unfold (denature) when subjected to extremes of heat, cold, pH, solvent composition, or mechanical stress. One might expect that shearing forces induced by a nonuniform fluid flow would also destabilize proteins, as when a protein solution flows rapidly through a narrow channel. However, although the protein literature contains many references to shear denaturation, we find little quantitative evidence for the phenomenon. We have investigated whether a high shear can destabilize a small globular protein to any measurable extent. We study a protein (horse cytochrome c, 104 amino acids) whose fluorescence increases sharply upon unfolding. By forcing the sample through a silica capillary (inner diameter 150-180 microm) at speeds approaching 10 m/s, we subject the protein to shear rates dv(z)/dr as large as approximately 2 x 10(5) s(-1) while illuminating it with an ultraviolet laser. We can readily detect fluorescence changes of <1%, corresponding to shifts of < approximately 0.01 kJ/mol in the stability of the folded state. We find no evidence that even our highest shear rates significantly destabilize the folded protein. A simple model suggests that extraordinary shear rates, approximately 10(7) s(-1), would be required to denature typical small, globular proteins in water.
Collapse
Affiliation(s)
- Juan Jaspe
- Department of Physics, University of Florida, Gainesville, 32611-8440, USA
| | | |
Collapse
|
15
|
Kumar S, Giri D. Force-induced conformational transition in a system of interacting stiff polymers: application to unfolding. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:052901. [PMID: 16383670 DOI: 10.1103/physreve.72.052901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Indexed: 05/05/2023]
Abstract
We consider a stiff polymer chain in poor solvent and apply a force at one end of the chain. We find that by varying the stiffness parameter, the polymer undergoes a transition from the globule state to the foldedlike state. The conformation of the folded state mimics the beta sheet as seen in the titin molecule. Using the exact enumeration technique, we study the extension-force and force-temperature diagrams of such a system. The force-temperature diagram shows the re-entrance behavior for a flexible chain. However, for a stiff chain this re-entrance behavior is absent and there is an enhancement in theta temperature with the rise of stiffness. We further propose that the internal information about the frozen structure of a polymer can be read from the distribution of end-to-end distance which shows a sawtoothlike behavior.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
16
|
Ji S, Ding J. Nonequilibrium Monte Carlo simulation of lattice block copolymer chains subject to oscillatory shear flow. J Chem Phys 2005; 122:164901. [PMID: 15945701 DOI: 10.1063/1.1884595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper has extended nonequilibrium Monte Carlo (MC) approach to simulate oscillatory shear flow in a lattice block copolymer system. Phase transition and associated rheological behaviors of multiple self-avoiding chains have been investigated. Stress tensor has been obtained based upon sampled configuration distribution functions. At low temperatures, micellar structures have been observed and the underlying frequency-dependent rheological properties exhibit different initial slopes. The simulation outputs are consistent with the experimental observations in literature. Chain deformation during oscillatory shear flow has also been revealed. Although MC simulation cannot account for hydrodynamic interaction, the highlight of our simulation approach is that it can, at small computing cost, investigate polymer chains simultaneously at different spatial scales, i.e., macroscopic rheological behaviors, mesoscopic self-assembled structures, and microscopic chain configurations.
Collapse
Affiliation(s)
- Shichen Ji
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | |
Collapse
|