1
|
Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca 2+: A Molecular Dynamics Study. Int J Mol Sci 2021; 22:ijms22169025. [PMID: 34445734 PMCID: PMC8396531 DOI: 10.3390/ijms22169025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization of the mutant huntingtin aggregates. In this context, the present study focuses on describing the interactions between CaM and two huntingtin mutants from a biophysical point of view, by using classical Molecular Dynamics techniques. The huntingtin models consist of a wild-type structure, one mutant with 45 glutamine residues and the second mutant with nine additional key-point mutations from glutamine residues into proline residues (9P(EM) model). Our docking scores and binding free energy calculations show higher binding affinities of all HTT models for the C-lobe end of the CaM protein. In terms of dynamic evolution, the 9P(EM) model triggered great structural changes into the CaM protein’s structure and shows the highest fluctuation rates due to its structural transitions at the helical level from α-helices to turns and random coils. Moreover, our proposed 9P(EM) model suggests much lower interaction energies when compared to the 45Qs-HTT mutant model, this finding being in good agreement with the 9P(EM)’s antagonistic effect hypothesis on highly toxic protein–protein interactions.
Collapse
|
2
|
Kawasaki H, Soma N, Kretsinger RH. Molecular Dynamics Study of the Changes in Conformation of Calmodulin with Calcium Binding and/or Target Recognition. Sci Rep 2019; 9:10688. [PMID: 31337841 PMCID: PMC6650393 DOI: 10.1038/s41598-019-47063-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/10/2019] [Indexed: 11/12/2022] Open
Abstract
Calmodulin is a calcium binding protein with two lobes, N-lobe and C-lobe, which evolved from duplication and fusion of a single precursor lobe of a pair of EF-hand. These two lobes of calmodulin show subtle differences in calcium binding and target recognition; these are important for the functions of calmodulin. Since the structures, especially main chain conformations, of two EF-lobes in holo-form are quite similar; this is a good example to evaluate the effect of side chains for structural dynamics. We analyzed the structure of calmodulin using molecular dynamics and found differences in conformational ensembles between N- and C-lobes. We also showed the mutant structures created by homology modeling could reproduce the difference of dynamic motion between N- and C-lobes.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Natsumi Soma
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Edington SC, Halling DB, Bennett SM, Middendorf TR, Aldrich RW, Baiz CR. Non-Additive Effects of Binding Site Mutations in Calmodulin. Biochemistry 2019; 58:2730-2739. [PMID: 31124357 DOI: 10.1021/acs.biochem.9b00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite decades of research on ion-sensing proteins, gaps persist in the understanding of ion binding affinity and selectivity even in well-studied proteins such as calmodulin. Site-directed mutagenesis is a powerful and popular tool for addressing outstanding questions about biological ion binding and is employed to selectively deactivate binding sites and insert chromophores at advantageous positions within ion binding structures. However, even apparently nonperturbative mutations can distort the binding dynamics they are employed to measure. We use Fourier transform infrared (FTIR) and ultrafast two-dimensional infrared (2D IR) spectroscopy of the carboxylate asymmetric stretching mode in calmodulin as a mutation- and label-independent probe of the conformational perturbations induced in calmodulin's binding sites by two classes of mutation, tryptophan insertion and carboxylate side-chain deletion, commonly used to study ion binding in proteins. Our results show that these mutations not only affect ion binding but also induce changes in calmodulin's conformational landscape along coordinates not probed by vibrational spectroscopy, remaining invisible without additional perturbation of binding site structure. Comparison of FTIR line shapes with 2D IR diagonal slices provides a clear example of how nonlinear spectroscopy produces well-resolved line shapes, refining otherwise featureless spectral envelopes into more informative vibrational spectra of proteins.
Collapse
Affiliation(s)
- Sean C Edington
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - D Brent Halling
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Suzanna M Bennett
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Thomas R Middendorf
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Richard W Aldrich
- Department of Neuroscience , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
4
|
Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019; 21:19795-19804. [DOI: 10.1039/c9cp03917a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ca2+binding and triggering conformation transition of nCaM were detected in unbiased molecular dynamics simulations.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Center for Quantitative Biology
| | - Zhuqing Zhang
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
5
|
Johnson J, Cain KW, Dunlap TB, Naumiec GR. Improved Synthesis of 2-Trifluoromethyl-10-aminopropylphenothiazine: Making 2-Trifluoromethyl-10-aminopropylphenothiazine Readily Available for Calmodulin Purification. ACS OMEGA 2018; 3:16309-16313. [PMID: 30533586 PMCID: PMC6275952 DOI: 10.1021/acsomega.8b02146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
An improved and high yielding three-step synthesis for the production of 2-trifluoromethyl-10-aminopropylphenothiazine (TAPP) using less hazardous and more inexpensive reagents, its coupling to Sepharose-4B resin, and its ability to purify calmodulin are described. The overall yield of TAPP, starting with 3-aminopropyl bromide hydrobromide and 2-(trifluoromethyl)phenothiazine, was 96%.
Collapse
|
6
|
Lai M, Brun D, Edelstein SJ, Le Novère N. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 2015; 11:e1004063. [PMID: 25611683 PMCID: PMC4303274 DOI: 10.1371/journal.pcbi.1004063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/26/2014] [Indexed: 01/30/2023] Open
Abstract
Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe) joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines) several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be explained as modulation of a pre-existing dynamic equilibrium between different conformations of calmodulin's lobes, in agreement with linkage theory and MWC-type models.
Collapse
Affiliation(s)
- Massimo Lai
- Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - Denis Brun
- EMBL-EBI, Hinxton, United Kingdom
- Amadeus IT Group, Sophia Antipolis, France
| | | | - Nicolas Le Novère
- Babraham Institute, Cambridge, United Kingdom
- EMBL-EBI, Hinxton, United Kingdom
| |
Collapse
|
7
|
Søndergaard MT, Sorensen AB, Skov LL, Kjaer-Sorensen K, Bauer MC, Nyegaard M, Linse S, Oxvig C, Overgaard MT. Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. FEBS J 2015; 282:803-16. [PMID: 25557436 DOI: 10.1111/febs.13184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 01/27/2023]
Abstract
Calmodulin (CaM) is the central mediator of intracellular Ca(2+) signalling in cardiomyocytes, where it conveys the intricate Ca(2+) transients to the proteins controlling cardiac contraction. We recently linked two separate mutations in CaM (N53I and N97S) to dominantly inherited catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmic disorder in which exercise or acute emotion can lead to syncope and sudden cardiac death. Given the ubiquitous presence of CaM in all eukaryote cells, it is particular intriguing that carriers of either mutation show no additional symptoms. Here, we investigated the effects of the CaM CPVT mutations in a zebrafish animal model. Three-day-old embryos injected with either CaM mRNA showed no detectable pathologies or developmental abnormalities. However, embryos injected with CPVT CaM mRNA displayed increased heart rate compared to wild-type CaM mRNA under β-adrenergic stimulation, demonstrating a conserved dominant cardiac specific effect between zebrafish and human carriers of these mutations. Motivated by the highly similar physiological phenotypes, we compared the effects of the N53I and N97S mutations on the biophysical and functional properties of CaM. Surprisingly, the mutations have opposing effects on CaM C-lobe Ca(2+) binding affinity and kinetics, and changes to the CaM N-lobe Ca(2+) binding are minor and specific to the N53I mutation. Furthermore, both mutations induce differential perturbations to structure and stability towards unfolding. Our results suggest different molecular disease mechanisms for the CPVT (N53I and N97S mutations) and strongly support that cardiac contraction is the physiological process most sensitive to CaM integrity.
Collapse
|
8
|
Wang J, Peng S, Cossins BP, Liao X, Chen K, Shao Q, Zhu X, Shi J, Zhu W. Mapping central α-helix linker mediated conformational transition pathway of calmodulin via simple computational approach. J Phys Chem B 2014; 118:9677-85. [PMID: 25120210 DOI: 10.1021/jp507186h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of intrinsic structural flexibility of calmodulin protein on the mechanism of its allosteric conformational transition are investigated in this article. Using a novel in silico approach, the conformational transition pathways of intact calmodulin as well as the isolated N- and C- terminal domains are identified and energetically characterized. It is observed that the central α-helix linker amplifies the structural flexibility of intact Ca(2+)-free calmodulin, which might facilitate the transition of the two domains. As a result, the global conformational transition of Ca(2+)-free calmodulin is initiated by the barrierless transition of two domains and proceeds through the barrier associated unwinding and bending of the central α-helix linker. The binding of Ca(2+) cations to calmodulin further increases the structural flexibility of the C-terminal domain and results in a downhill transition pathway of which all regions transit in a concerted manner. On the other hand, the separation of the N- and C-terminal domains from calmodulin protein loses the mediating function of central α-helix linker, leading to more difficult conformational transitions of both domains. The present study provides novel insights into the correlation of the integrity of protein, the structural flexibility, and the mechanism of conformational transition of proteinlike calmodulin.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kitagawa C, Nakatomi A, Hwang D, Osaka I, Fujimori H, Kawasaki H, Arakawa R, Murakami Y, Ohki S. Roles of the C-terminal residues of calmodulin in structure and function. Biophysics (Nagoya-shi) 2011; 7:35-49. [PMID: 27857591 PMCID: PMC5036782 DOI: 10.2142/biophysics.7.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/08/2011] [Indexed: 12/01/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, flow dialysis, and bioactivity measurements were employed to investigate the roles of the C-terminal residues of calmodulin (CaM). In the present study, we prepared a series of truncated mutants of chicken CaM that lack four (CCMΔ4) to eight (CCMΔ8) residues at the C-terminal end. It was found that CCMΔ4, lacking the last four residues (M145 to K148), binds four Ca2+ ions. Further deletion gradually decreased the ability to bind the fourth Ca2+ ion, and CCMΔ8 completely lost the ability. Interestingly, both lobes of Ca2+-sturated CCMΔ5 showed instability in the conformation, although limited part in the C-lobe of Ca2+-saturated CCMΔ4 was instable. Moreover, unlike CCMΔ4, structure of the C-lobe in CCMΔ5 bound to the target displayed dissimilarity to that of CaM, suggesting that deletion of M144 changes the binding manner. Deletion of the last five residues (M144 to K148) and further truncation of the C-terminal region decreased apparent capacity for target activation. Little contribution of the last four residues including M145 was observed for structural stability, Ca2+-binding, and target activation. Although both M144 and M145 have been recognized as key residues for the function, the present data suggest that M144 is a more important residue to attain Ca2+ induced conformational change and to form a proper Ca2+-saturated conformation.
Collapse
Affiliation(s)
- Chihiro Kitagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| | - Akiko Nakatomi
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| | - Dasol Hwang
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Issey Osaka
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hiroki Fujimori
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 564-8680, Japan
| | - Ryuichi Arakawa
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 564-8680, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
10
|
Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile. Biochem J 2010; 432:89-99. [PMID: 20815817 DOI: 10.1042/bj20100505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The skeletal muscle isoform of the ryanodine receptor Ca²(+)-release channel (RyR1) is regulated by Ca²(+) and CaM (calmodulin). CaM shifts the biphasic Ca²(+)-dependence of RyR1 activation leftward, effectively increasing channel opening at low Ca²(+) and decreasing channel opening at high Ca²(+). The conversion of CaM from a RyR1 activator into an inhibitor is due to the binding of Ca²(+) to CaM; however, which of CaM's four Ca²(+)-binding sites serves as the switch for this conversion is unclear. We engineered a series of mutant CaMs designed to individually increase the Ca²(+) affinity of each of CaM's EF-hands by increasing the number of acidic residues in Ca²(+)-chelating positions. Domain-specific Ca²(+) affinities of each CaM variant were determined by equilibrium fluorescence titration. Mutations in sites I (T26D) or II (N60D) in CaM's N-terminal domain had little effect on CaM Ca²(+) affinity and regulation of RyR1. However, the site III mutation N97D increased the Ca²(+)-binding affinity of CaM's C-terminal domain and caused CaM to inhibit RyR1 at a lower Ca²(+) concentration than wild-type CaM. Conversely, the site IV mutation Q135D decreased the Ca²(+)-binding affinity of CaM's C-terminal domain and caused CaM to inhibit RyR1 at higher Ca²(+) concentrations. These results support the hypothesis that Ca²(+) binding to CaM's C-terminal acts as the switch converting CaM from a RyR1 activator into a channel inhibitor. These results indicate further that targeting CaM's Ca²(+) affinity may be a valid strategy to tune the activation profile of CaM-regulated ion channels.
Collapse
|
11
|
Huang H, Ishida H, Vogel HJ. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells. Protein Sci 2010; 19:475-85. [PMID: 20054830 PMCID: PMC2866273 DOI: 10.1002/pro.325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/12/2022]
Abstract
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium-binding protein, regulating cellular responses to the second messenger Ca(2+). We have found that the metal ion free (apo-) form of sCaM4 possesses a half unfolded structure, with the N-terminal domain unfolded and the C-terminal domain folded. This result was unexpected as the apo-forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg(2+) ions are always present at high concentrations in cells (0.5-2 mM), we suggest that Mg(2+) should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg(2+) the initially unfolded N-terminal domain of sCaM4 folds into an alpha-helix-rich structure, similar to the Ca(2+) form. We have used the NMR backbone residual dipolar coupling restraints (1)D(NH), (1)D(C alpha H alpha), and (1)D(C'C alpha) to determine the solution structure of the N-terminal domain of Mg(2+)-sCaM4 (Mg(2+)-sCaM4-NT). Compared with the known structure of Ca(2+)-sCaM4, the structure of the Mg(2+)-sCaM4-NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg(2+)-sCaM4 and CaM-binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg(2+)-sCaM4 does not bind to Ca(2+)-CaM target peptides and therefore is functionally similar to apo-mCaM. The Mg(2+)- and apo-structures of the sCaM4-NT provide unique insights into the structure and function of some plant calmodulins in resting cells.
Collapse
Affiliation(s)
| | | | - Hans J Vogel
- Structural Biology Research Group, Department of Biological Sciences, University of CalgaryCalgary, Alberta, Canada T2N 1N4
| |
Collapse
|
12
|
O'Donnell SE, Newman RA, Witt TJ, Hultman R, Froehlig JR, Christensen AP, Shea MA. Thermodynamics and conformational change governing domain-domain interactions of calmodulin. Methods Enzymol 2009; 466:503-26. [PMID: 21609874 DOI: 10.1016/s0076-6879(09)66021-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a small (148 amino acid), ubiquitously expressed eukaryotic protein essential for Ca(2+) regulation and signaling. This highly acidic polypeptide (pI<4) has two homologous domains (N and C), each consisting of two EF-hand Ca(2+)-binding sites. Despite significant homology, the domains have intrinsic differences in their Ca(2+)-binding properties and separable roles in regulating physiological targets such as kinases and ion channels. In mammalian full-length CaM, sites III and IV in the C-domain bind Ca(2+) cooperatively with ~10-fold higher affinity than sites I and II in the N-domain. However, the difference is only twofold when CaM is severed at residue 75, indicating that anticooperative interactions occur in full-length CaM. The Ca(2+)-binding properties of sites I and II are regulated by several factors including the interplay of interdomain linker residues far from the binding sites. Our prior thermodynamic studies showed that these residues inhibit thermal denaturation and decrease calcium affinity. Based on high-resolution structures and NMR spectra, there appear to be interactions between charged residues in the sequence 75-80 and those near the amino terminus of CaM. To explore electrostatic contributions to interdomain interactions in CaM, KCl was used to perturb the Ca(2+)-binding affinity, thermal stability, and hydrodynamic size of a nested set of recombinant mammalian CaM (rCaM) fragments terminating at residues 75, 80, 85, or 90. Potassium chloride is known to decrease Ca(2+)-binding affinity of full-length CaM. It may act directly by competition with acidic side chains that chelate Ca(2+) in the binding sites, and indirectly elsewhere in the molecule by changing tertiary constraints and conformation. In all proteins studied, KCl decreased Ca(2+)-affinity, decreased Stokes radius, and increased thermal stability, but not monotonically. Crystallographic structures of Ca(2+)-saturated rCaM(1-75) (3B32.pdb) and rCaM(1-90) (3IFK.pdb) were determined, offering cautionary notes about the effect of packing interactions on flexible linkers. This chapter describes an array of methods for characterizing system-specific thermodynamic properties that in concert govern structure and function.
Collapse
Affiliation(s)
- Susan E O'Donnell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Forest A, Swulius MT, Tse JKY, Bradshaw JM, Gaertner T, Waxham MN. Role of the N- and C-lobes of calmodulin in the activation of Ca(2+)/calmodulin-dependent protein kinase II. Biochemistry 2008; 47:10587-99. [PMID: 18795794 PMCID: PMC2665295 DOI: 10.1021/bi8007033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Collapse
Affiliation(s)
- Amelie Forest
- The Department of Neurobiology and Anatomy, the University of Texas Medical School at Houston, Houston, TX
| | - Matthew T. Swulius
- The Department of Neurobiology and Anatomy, the University of Texas Medical School at Houston, Houston, TX
| | - Joyce K. Y. Tse
- Department of Biochemical Pharmacology, Roche Palo Alto LLC, Palo Alto, CA
| | | | - Tara Gaertner
- The Department of Neurobiology and Anatomy, the University of Texas Medical School at Houston, Houston, TX
| | - M. Neal Waxham
- The Department of Neurobiology and Anatomy, the University of Texas Medical School at Houston, Houston, TX
| |
Collapse
|
14
|
Fenton AW. Allostery: an illustrated definition for the 'second secret of life'. Trends Biochem Sci 2008; 33:420-5. [PMID: 18706817 PMCID: PMC2574622 DOI: 10.1016/j.tibs.2008.05.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/15/2008] [Accepted: 05/28/2008] [Indexed: 11/29/2022]
Abstract
Although allosteric regulation is the 'second secret of life', the molecular mechanisms that give rise to allostery currently elude understanding. In my opinion, experimental progress is hampered by a commonly used but misleading definition of allostery as protein structural changes that are elicited by the binding of a single ligand. Allostery is more strictly defined in functional terms as a comparison of how one ligand binds in the absence, versus the presence, of a second ligand. Therefore, as each of the two binding events involves two protein complexes, a study of allostery must consider four complexes and not just two. Such a comparison can distinguish allosteric from non-allosteric protein changes, the importance of which is frequently overlooked. When a study of all four complexes is not feasible, an alternative, albeit limited, strategy can identify subsets of allosteric-specific changes.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
15
|
Abstract
Oxidation of methionine residues in calmodulin (CaM) lowers the affinity for calcium and results in an inability to activate target proteins fully. To evaluate the structural consequences of CaM oxidation, we used infrared difference spectroscopy to identify oxidation-dependent effects on protein conformation and calcium liganding. Oxidation-induced changes include an increase in hydration of alpha-helices, as indicated in the downshift of the amide I' band of both apo-CaM and Ca(2+)-CaM, and a modification of calcium liganding by carboxylate side chains, reflected in antisymmetric carboxylate band shifts. Changes in carboxylate ligands are consistent with the model we propose: an Asp at position 1 of the EF-loop experiences diminished hydrogen bonding with the polypeptide backbone, an Asp at position 3 forms a bidentate coordination of calcium, and an Asp at position 5 forms a pseudobridging coordination with a calcium-bound water molecule. The bidentate coordination of calcium by conserved glutamates is unaffected by oxidation. The observed changes in calcium ligation are discussed in terms of the placement of methionine side chains relative to the calcium-binding sites, suggesting that varying sensitivities of binding sites to oxidation may underlie the loss of CaM function upon oxidation.
Collapse
|
16
|
Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. Proteins 2008; 71:1792-812. [DOI: 10.1002/prot.21861] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Sharp K, Skinner JJ. Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling. Proteins 2006; 65:347-61. [PMID: 16933296 DOI: 10.1002/prot.21146] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new method for analyzing the dynamics of proteins is developed and tested. The method, pump-probe molecular dynamics, excites selected atoms or residues with a set of oscillating forces, and the transmission of the impulse to other parts of the protein is probed using Fourier transform of the atomic motions. From this analysis, a coupling profile can be determined which quantifies the degree of interaction between pump and probe residues. Various physical properties of the method such as reciprocity and speed of transmission are examined to establish the soundness of the method. The coupling strength can be used to address questions such as the degree of interaction between different residues at the level of dynamics, and identify propagation of influence of one part of the protein on another via "pathways" through the protein. The method is illustrated by analysis of coupling between different secondary structure elements in the allosteric protein calmodulin, and by analysis of pathways of residue-residue interaction in the PDZ domain protein previously elucidated by genomics and mutational studies.
Collapse
Affiliation(s)
- Kim Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
18
|
Shuman CF, Jiji R, Kerfeldt KS, Linse S. Reconstitution of calmodulin from domains and subdomains: Influence of target peptide. J Mol Biol 2006; 358:870-81. [PMID: 16530223 DOI: 10.1016/j.jmb.2006.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/20/2006] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
Reconstitution studies of a protein from domain fragments can furnish important insights into the distinctive role of particular domain interactions and how they affect biophysical properties important for function. Using isothermal titration calorimetry (ITC) and a number of spectroscopic and chromatographic tools, including CD, fluorescence and NMR spectroscopy, size-exclusion chromatography and non-denaturing agarose gel electrophoresis, we have investigated the reconstitution of the ubiquitous Ca2+-sensor protein calmodulin (CaM) and its globular domains from fragments comprising one or two EF-hands. The studies were carried out with and without the target peptide from smooth muscle myosin light chain kinase (smMLCKp). The CaM-target complex can be reconstituted from the three components consisting of the target peptide and the globular domains TR1C and TR2C. In the absence of peptide, there is no evidence for association of the globular domains. The globular domains can further be reconstituted from their corresponding native subdomains. The dissociation constant, K(D), in 2 mM Tris-HCl (pH 7.5), for the subdomain complexes, EF1:EF2 and EF3:EF4, was determined with ITC to 9.3 x 10(-7) M and 5.9 x 10(-8) M, respectively. Thus, the affinity between the two C-terminal subdomains, located within TR2C, is stronger by a factor of 16 than that between the corresponding subdomains within TR1C. These observations are corroborated by the spectroscopic and chromatographic investigations.
Collapse
Affiliation(s)
- Cynthia F Shuman
- Department of Biophysical Chemistry, Chemical Center, Lund University, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
19
|
Kobayashi C, Takada S. Protein grabs a ligand by extending anchor residues: molecular simulation for Ca2+ binding to calmodulin loop. Biophys J 2006; 90:3043-51. [PMID: 16473902 PMCID: PMC1432117 DOI: 10.1529/biophysj.105.078071] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural difference in proteins between unbound and bound forms directly suggests the importance of the conformational plasticity of proteins. However, pathways that connect two-end structures and how they are coupled to the binding reaction are not well understood at atomic resolution. Here, we analyzed the free-energy landscape, explicitly taking into account coupling between binding and conformational change by performing atomistic molecular dynamics simulations for Ca2+ binding to a calmodulin loop. Using the AMBER force field with explicit water solvent, we conducted umbrella sampling for the free-energy surface and steered molecular dynamics for the pathway search. We found that, at an early stage of binding, some key residue side chains extend their "arms" to catch Ca2+ and, after catching, they carry the Ca2+ to the center of the binding pocket. This grabbing motion resulted in smooth and stepwise exchange in coordination partners of Ca2+ from water oxygen to atoms in the calmodulin loop. The key residue that first caught the ion was one of the two acidic residues, which are highly conserved. In the pathway simulations, different pathways were observed between binding and dissociation reactions: The former was more diverse than the latter.
Collapse
Affiliation(s)
- Chigusa Kobayashi
- Department of Chemistry, Faculty of Science, Kobe University, and CREST, Japan Science and Technology Corporation, Rokkodai, Nada, Kobe 657-8501, Japan
| | | |
Collapse
|
20
|
Prasad A, Zhao H, Rutherford JM, Housley N, Nichols C, Pedigo S. Effect of linker segments on the stability of epithelial cadherin domain 2. Proteins 2005; 62:111-21. [PMID: 16287100 DOI: 10.1002/prot.20657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial cadherin is a transmembrane protein that is essential in calcium-dependent cell-cell recognition and adhesion. It contains five independently folded globular domains in its extracellular region. Each domain has a seven-strand beta-sheet immunoglobulin fold. Short seven-residue peptide segments connect the globular domains and provide oxygens to chelate calcium ions at the interface between the domains (Nagar et al., Nature 1995;380:360-364). Recently, stability studies of ECAD2 (Prasad et al., Biochemistry 2004;43:8055-8066) were undertaken with the motivation that Domain 2 is a representative domain for this family of proteins. The definition of a domain boundary is somewhat arbitrary; hence, it was important to examine the effect of the adjoining linker regions that connect Domain 2 to the adjacent domains. Present studies employ temperature-denaturation and proteolytic susceptibility to provide insight into the impact of these linkers on Domain 2. The significant findings of our present study are threefold. First, the linker segments destabilize the core domain in the absence of calcium. Second, the destabilization due to addition of the linker segments can be partially reversed by the addition of calcium. Third, sodium chloride stabilizes all constructs. This result implies that electrostatic repulsion is a contributor to destabilization of the core domain by addition of the linkers. Thus, the context of Domain 2 within the whole molecule affects its thermodynamic characteristics.
Collapse
Affiliation(s)
- Alka Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hobson KF, Housley NA, Pedigo S. Ligand-linked stability of mutants of the C-domain of calmodulin. Biophys Chem 2004; 114:43-52. [PMID: 15792860 DOI: 10.1016/j.bpc.2004.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 10/26/2022]
Abstract
There is a necessary energetic linkage between ligand binding and stability in biological molecules. The critical glutamate in Site 4 was mutated to create two mutants of the C-domain of calmodulin yielding E140D and E140Q. These proteins were stably folded in the absence of calcium, but had dramatically impaired binding of calcium. We determined the stability of the mutant proteins in the absence and presence of calcium using urea-induced unfolding monitored by circular dichroism (CD) spectroscopy. These calcium-dependent unfolding curves were fit to models that allowed for linkage of stability to binding of a single calcium ion to the native and unfolded states. Simultaneous analysis of the unfolding profiles for each mutant yielded estimates for calcium-binding constants that were consistent with results from direct titrations monitored by fluorescence. Binding to the unfolded state was not an important energetic contributor to the ligand-linked stability of these mutants.
Collapse
Affiliation(s)
- Kenosha F Hobson
- University of Mississippi, Dept. of Chemistry and Biochemistry, University, MS 38677, USA
| | | | | |
Collapse
|
22
|
Shepherd CM, Vogel HJ. A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale. Biophys J 2004; 87:780-91. [PMID: 15298887 PMCID: PMC1304488 DOI: 10.1529/biophysj.103.033266] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 04/20/2004] [Indexed: 11/18/2022] Open
Abstract
A 20-ns molecular dynamics simulation of Ca(2+)-calmodulin (CaM) in explicit solvent is described. Within 5 ns, the extended crystal structure adopts a compact shape similar in dimension to complexes of CaM and target peptides but with a substantially different orientation between the N- and C-terminal domains. Significant interactions are observed between the terminal domains in this compact state, which are mediated through the same regions of CaM that bind to target peptides derived from protein kinases and most other target proteins. The process of compaction is driven by the loss of helical structure in two separate regions between residues 75-79 and 82-86, the latter being driven by unfavorable electrostatic interactions between acidic residues. In the first 5 ns of the simulation, a substantial number of contacts are observed between the first helix of the N-terminal domain and residues 74-77 of the central linker. These contacts are correlated with the closing of the second EF-hand, indicating a mechanism by which they can lower calcium affinity in the N-terminal domain.
Collapse
Affiliation(s)
- Craig M Shepherd
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|